| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restreg | Structured version Visualization version GIF version | ||
| Description: A reformulation of the axiom of regularity using elementwise intersection. (RK: might have to be placed later since theorems in this section are to be moved early (in the section related to the algebra of sets).) (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restreg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∅ ∈ (𝐴 ↾t 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfreg 9635 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | |
| 2 | eqcom 2744 | . . . 4 ⊢ ((𝑥 ∩ 𝐴) = ∅ ↔ ∅ = (𝑥 ∩ 𝐴)) | |
| 3 | 2 | rexbii 3094 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ↔ ∃𝑥 ∈ 𝐴 ∅ = (𝑥 ∩ 𝐴)) |
| 4 | 1, 3 | sylib 218 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∅ = (𝑥 ∩ 𝐴)) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝑉) | |
| 6 | elrest 17472 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (∅ ∈ (𝐴 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐴 ∅ = (𝑥 ∩ 𝐴))) | |
| 7 | 5, 6 | syldan 591 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (∅ ∈ (𝐴 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐴 ∅ = (𝑥 ∩ 𝐴))) |
| 8 | 4, 7 | mpbird 257 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∅ ∈ (𝐴 ↾t 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 ∩ cin 3950 ∅c0 4333 (class class class)co 7431 ↾t crest 17465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 ax-reg 9632 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-rest 17467 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |