Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restreg Structured version   Visualization version   GIF version

Theorem bj-restreg 37122
Description: A reformulation of the axiom of regularity using elementwise intersection. (RK: might have to be placed later since theorems in this section are to be moved early (in the section related to the algebra of sets).) (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restreg ((𝐴𝑉𝐴 ≠ ∅) → ∅ ∈ (𝐴t 𝐴))

Proof of Theorem bj-restreg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zfreg 9614 . . 3 ((𝐴𝑉𝐴 ≠ ∅) → ∃𝑥𝐴 (𝑥𝐴) = ∅)
2 eqcom 2743 . . . 4 ((𝑥𝐴) = ∅ ↔ ∅ = (𝑥𝐴))
32rexbii 3084 . . 3 (∃𝑥𝐴 (𝑥𝐴) = ∅ ↔ ∃𝑥𝐴 ∅ = (𝑥𝐴))
41, 3sylib 218 . 2 ((𝐴𝑉𝐴 ≠ ∅) → ∃𝑥𝐴 ∅ = (𝑥𝐴))
5 simpl 482 . . 3 ((𝐴𝑉𝐴 ≠ ∅) → 𝐴𝑉)
6 elrest 17446 . . 3 ((𝐴𝑉𝐴𝑉) → (∅ ∈ (𝐴t 𝐴) ↔ ∃𝑥𝐴 ∅ = (𝑥𝐴)))
75, 6syldan 591 . 2 ((𝐴𝑉𝐴 ≠ ∅) → (∅ ∈ (𝐴t 𝐴) ↔ ∃𝑥𝐴 ∅ = (𝑥𝐴)))
84, 7mpbird 257 1 ((𝐴𝑉𝐴 ≠ ∅) → ∅ ∈ (𝐴t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wrex 3061  cin 3930  c0 4313  (class class class)co 7410  t crest 17439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-reg 9611
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-rest 17441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator