![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restreg | Structured version Visualization version GIF version |
Description: A reformulation of the axiom of regularity using elementwise intersection. (RK: might have to be placed later since theorems in this section are to be moved early (in the section related to the algebra of sets).) (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restreg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∅ ∈ (𝐴 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfreg 9664 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | |
2 | eqcom 2747 | . . . 4 ⊢ ((𝑥 ∩ 𝐴) = ∅ ↔ ∅ = (𝑥 ∩ 𝐴)) | |
3 | 2 | rexbii 3100 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ↔ ∃𝑥 ∈ 𝐴 ∅ = (𝑥 ∩ 𝐴)) |
4 | 1, 3 | sylib 218 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∅ = (𝑥 ∩ 𝐴)) |
5 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝑉) | |
6 | elrest 17487 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (∅ ∈ (𝐴 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐴 ∅ = (𝑥 ∩ 𝐴))) | |
7 | 5, 6 | syldan 590 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (∅ ∈ (𝐴 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐴 ∅ = (𝑥 ∩ 𝐴))) |
8 | 4, 7 | mpbird 257 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∅ ∈ (𝐴 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ∩ cin 3975 ∅c0 4352 (class class class)co 7448 ↾t crest 17480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-reg 9661 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-rest 17482 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |