Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restreg Structured version   Visualization version   GIF version

Theorem bj-restreg 37065
Description: A reformulation of the axiom of regularity using elementwise intersection. (RK: might have to be placed later since theorems in this section are to be moved early (in the section related to the algebra of sets).) (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restreg ((𝐴𝑉𝐴 ≠ ∅) → ∅ ∈ (𝐴t 𝐴))

Proof of Theorem bj-restreg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zfreg 9664 . . 3 ((𝐴𝑉𝐴 ≠ ∅) → ∃𝑥𝐴 (𝑥𝐴) = ∅)
2 eqcom 2747 . . . 4 ((𝑥𝐴) = ∅ ↔ ∅ = (𝑥𝐴))
32rexbii 3100 . . 3 (∃𝑥𝐴 (𝑥𝐴) = ∅ ↔ ∃𝑥𝐴 ∅ = (𝑥𝐴))
41, 3sylib 218 . 2 ((𝐴𝑉𝐴 ≠ ∅) → ∃𝑥𝐴 ∅ = (𝑥𝐴))
5 simpl 482 . . 3 ((𝐴𝑉𝐴 ≠ ∅) → 𝐴𝑉)
6 elrest 17487 . . 3 ((𝐴𝑉𝐴𝑉) → (∅ ∈ (𝐴t 𝐴) ↔ ∃𝑥𝐴 ∅ = (𝑥𝐴)))
75, 6syldan 590 . 2 ((𝐴𝑉𝐴 ≠ ∅) → (∅ ∈ (𝐴t 𝐴) ↔ ∃𝑥𝐴 ∅ = (𝑥𝐴)))
84, 7mpbird 257 1 ((𝐴𝑉𝐴 ≠ ∅) → ∅ ∈ (𝐴t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cin 3975  c0 4352  (class class class)co 7448  t crest 17480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rest 17482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator