| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restreg | Structured version Visualization version GIF version | ||
| Description: A reformulation of the axiom of regularity using elementwise intersection. (RK: might have to be placed later since theorems in this section are to be moved early (in the section related to the algebra of sets).) (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restreg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∅ ∈ (𝐴 ↾t 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfreg 9614 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | |
| 2 | eqcom 2743 | . . . 4 ⊢ ((𝑥 ∩ 𝐴) = ∅ ↔ ∅ = (𝑥 ∩ 𝐴)) | |
| 3 | 2 | rexbii 3084 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ↔ ∃𝑥 ∈ 𝐴 ∅ = (𝑥 ∩ 𝐴)) |
| 4 | 1, 3 | sylib 218 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∅ = (𝑥 ∩ 𝐴)) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝑉) | |
| 6 | elrest 17446 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (∅ ∈ (𝐴 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐴 ∅ = (𝑥 ∩ 𝐴))) | |
| 7 | 5, 6 | syldan 591 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → (∅ ∈ (𝐴 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝐴 ∅ = (𝑥 ∩ 𝐴))) |
| 8 | 4, 7 | mpbird 257 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∅ ∈ (𝐴 ↾t 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 ∩ cin 3930 ∅c0 4313 (class class class)co 7410 ↾t crest 17439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-reg 9611 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-rest 17441 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |