Proof of Theorem bj-0int
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ssv 4007 | . . . . . . . . 9
⊢ 𝑋 ⊆ V | 
| 2 |  | int0 4961 | . . . . . . . . 9
⊢ ∩ ∅ = V | 
| 3 | 1, 2 | sseqtrri 4032 | . . . . . . . 8
⊢ 𝑋 ⊆ ∩ ∅ | 
| 4 |  | dfss2 3968 | . . . . . . . 8
⊢ (𝑋 ⊆ ∩ ∅ ↔ (𝑋 ∩ ∩ ∅)
= 𝑋) | 
| 5 | 3, 4 | mpbi 230 | . . . . . . 7
⊢ (𝑋 ∩ ∩ ∅) = 𝑋 | 
| 6 | 5 | eqcomi 2745 | . . . . . 6
⊢ 𝑋 = (𝑋 ∩ ∩
∅) | 
| 7 | 6 | eleq1i 2831 | . . . . 5
⊢ (𝑋 ∈ 𝐵 ↔ (𝑋 ∩ ∩ ∅)
∈ 𝐵) | 
| 8 | 7 | a1i 11 | . . . 4
⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝑋 ∈ 𝐵 ↔ (𝑋 ∩ ∩ ∅)
∈ 𝐵)) | 
| 9 |  | eldifsn 4785 | . . . . . . . 8
⊢ (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔
(𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅)) | 
| 10 |  | sstr2 3989 | . . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ 𝒫 𝑋 → 𝑥 ⊆ 𝒫 𝑋)) | 
| 11 |  | intss2 5107 | . . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝒫 𝑋 → (𝑥 ≠ ∅ → ∩ 𝑥
⊆ 𝑋)) | 
| 12 | 10, 11 | syl6 35 | . . . . . . . . . 10
⊢ (𝑥 ⊆ 𝐴 → (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ≠ ∅ → ∩ 𝑥
⊆ 𝑋))) | 
| 13 |  | elpwi 4606 | . . . . . . . . . 10
⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | 
| 14 | 12, 13 | syl11 33 | . . . . . . . . 9
⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ∈ 𝒫 𝐴 → (𝑥 ≠ ∅ → ∩ 𝑥
⊆ 𝑋))) | 
| 15 | 14 | impd 410 | . . . . . . . 8
⊢ (𝐴 ⊆ 𝒫 𝑋 → ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅) → ∩ 𝑥
⊆ 𝑋)) | 
| 16 | 9, 15 | biimtrid 242 | . . . . . . 7
⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → ∩ 𝑥
⊆ 𝑋)) | 
| 17 |  | dfss2 3968 | . . . . . . . . 9
⊢ (∩ 𝑥
⊆ 𝑋 ↔ (∩ 𝑥
∩ 𝑋) = ∩ 𝑥) | 
| 18 |  | incom 4208 | . . . . . . . . . . 11
⊢ (∩ 𝑥
∩ 𝑋) = (𝑋 ∩ ∩ 𝑥) | 
| 19 | 18 | eqeq1i 2741 | . . . . . . . . . 10
⊢ ((∩ 𝑥
∩ 𝑋) = ∩ 𝑥
↔ (𝑋 ∩ ∩ 𝑥) =
∩ 𝑥) | 
| 20 |  | eqcom 2743 | . . . . . . . . . 10
⊢ ((𝑋 ∩ ∩ 𝑥) =
∩ 𝑥 ↔ ∩ 𝑥 = (𝑋 ∩ ∩ 𝑥)) | 
| 21 | 19, 20 | sylbb 219 | . . . . . . . . 9
⊢ ((∩ 𝑥
∩ 𝑋) = ∩ 𝑥
→ ∩ 𝑥 = (𝑋 ∩ ∩ 𝑥)) | 
| 22 | 17, 21 | sylbi 217 | . . . . . . . 8
⊢ (∩ 𝑥
⊆ 𝑋 → ∩ 𝑥 =
(𝑋 ∩ ∩ 𝑥)) | 
| 23 |  | eleq1 2828 | . . . . . . . . 9
⊢ (∩ 𝑥 =
(𝑋 ∩ ∩ 𝑥)
→ (∩ 𝑥 ∈ 𝐵 ↔ (𝑋 ∩ ∩ 𝑥) ∈ 𝐵)) | 
| 24 | 23 | a1i 11 | . . . . . . . 8
⊢ (𝐴 ⊆ 𝒫 𝑋 → (∩ 𝑥 =
(𝑋 ∩ ∩ 𝑥)
→ (∩ 𝑥 ∈ 𝐵 ↔ (𝑋 ∩ ∩ 𝑥) ∈ 𝐵))) | 
| 25 | 22, 24 | syl5 34 | . . . . . . 7
⊢ (𝐴 ⊆ 𝒫 𝑋 → (∩ 𝑥
⊆ 𝑋 → (∩ 𝑥
∈ 𝐵 ↔ (𝑋 ∩ ∩ 𝑥)
∈ 𝐵))) | 
| 26 | 16, 25 | syld 47 | . . . . . 6
⊢ (𝐴 ⊆ 𝒫 𝑋 → (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → (∩ 𝑥
∈ 𝐵 ↔ (𝑋 ∩ ∩ 𝑥)
∈ 𝐵))) | 
| 27 | 26 | ralrimiv 3144 | . . . . 5
⊢ (𝐴 ⊆ 𝒫 𝑋 → ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(∩ 𝑥
∈ 𝐵 ↔ (𝑋 ∩ ∩ 𝑥)
∈ 𝐵)) | 
| 28 |  | ralbi 3102 | . . . . 5
⊢
(∀𝑥 ∈
(𝒫 𝐴 ∖
{∅})(∩ 𝑥 ∈ 𝐵 ↔ (𝑋 ∩ ∩ 𝑥) ∈ 𝐵) → (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∩ 𝑥
∈ 𝐵 ↔
∀𝑥 ∈ (𝒫
𝐴 ∖ {∅})(𝑋 ∩ ∩ 𝑥)
∈ 𝐵)) | 
| 29 | 27, 28 | syl 17 | . . . 4
⊢ (𝐴 ⊆ 𝒫 𝑋 → (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∩ 𝑥
∈ 𝐵 ↔
∀𝑥 ∈ (𝒫
𝐴 ∖ {∅})(𝑋 ∩ ∩ 𝑥)
∈ 𝐵)) | 
| 30 | 8, 29 | anbi12d 632 | . . 3
⊢ (𝐴 ⊆ 𝒫 𝑋 → ((𝑋 ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∩ 𝑥
∈ 𝐵) ↔ ((𝑋 ∩ ∩ ∅) ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 ∩ ∩ 𝑥) ∈ 𝐵))) | 
| 31 | 30 | biancomd 463 | . 2
⊢ (𝐴 ⊆ 𝒫 𝑋 → ((𝑋 ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∩ 𝑥
∈ 𝐵) ↔
(∀𝑥 ∈
(𝒫 𝐴 ∖
{∅})(𝑋 ∩ ∩ 𝑥)
∈ 𝐵 ∧ (𝑋 ∩ ∩ ∅) ∈ 𝐵))) | 
| 32 |  | 0elpw 5355 | . . 3
⊢ ∅
∈ 𝒫 𝐴 | 
| 33 |  | inteq 4948 | . . . . 5
⊢ (𝑥 = ∅ → ∩ 𝑥 =
∩ ∅) | 
| 34 |  | ineq2 4213 | . . . . 5
⊢ (∩ 𝑥 =
∩ ∅ → (𝑋 ∩ ∩ 𝑥) = (𝑋 ∩ ∩
∅)) | 
| 35 |  | eleq1 2828 | . . . . 5
⊢ ((𝑋 ∩ ∩ 𝑥) =
(𝑋 ∩ ∩ ∅) → ((𝑋 ∩ ∩ 𝑥) ∈ 𝐵 ↔ (𝑋 ∩ ∩ ∅)
∈ 𝐵)) | 
| 36 | 33, 34, 35 | 3syl 18 | . . . 4
⊢ (𝑥 = ∅ → ((𝑋 ∩ ∩ 𝑥)
∈ 𝐵 ↔ (𝑋 ∩ ∩ ∅) ∈ 𝐵)) | 
| 37 | 36 | bj-raldifsn 37102 | . . 3
⊢ (∅
∈ 𝒫 𝐴 →
(∀𝑥 ∈ 𝒫
𝐴(𝑋 ∩ ∩ 𝑥) ∈ 𝐵 ↔ (∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})(𝑋 ∩ ∩ 𝑥) ∈ 𝐵 ∧ (𝑋 ∩ ∩ ∅)
∈ 𝐵))) | 
| 38 | 32, 37 | ax-mp 5 | . 2
⊢
(∀𝑥 ∈
𝒫 𝐴(𝑋 ∩ ∩ 𝑥)
∈ 𝐵 ↔
(∀𝑥 ∈
(𝒫 𝐴 ∖
{∅})(𝑋 ∩ ∩ 𝑥)
∈ 𝐵 ∧ (𝑋 ∩ ∩ ∅) ∈ 𝐵)) | 
| 39 | 31, 38 | bitr4di 289 | 1
⊢ (𝐴 ⊆ 𝒫 𝑋 → ((𝑋 ∈ 𝐵 ∧ ∀𝑥 ∈ (𝒫 𝐴 ∖ {∅})∩ 𝑥
∈ 𝐵) ↔
∀𝑥 ∈ 𝒫
𝐴(𝑋 ∩ ∩ 𝑥) ∈ 𝐵)) |