Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbceqgALT Structured version   Visualization version   GIF version

Theorem bj-sbceqgALT 36885
Description: Distribute proper substitution through an equality relation. Alternate proof of sbceqg 4418. (Contributed by BJ, 6-Oct-2018.) Proof modification is discouraged to avoid using sbceqg 4418, but the Metamath program "MM-PA> MINIMIZE_WITH * / EXCEPT sbceqg" command is ok. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-sbceqgALT (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))

Proof of Theorem bj-sbceqgALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2728 . . . . . 6 (𝐵 = 𝐶 ↔ ∀𝑦(𝑦𝐵𝑦𝐶))
21sbcth 3806 . . . . 5 (𝐴𝑉[𝐴 / 𝑥](𝐵 = 𝐶 ↔ ∀𝑦(𝑦𝐵𝑦𝐶)))
3 sbcbig 3846 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥](𝐵 = 𝐶 ↔ ∀𝑦(𝑦𝐵𝑦𝐶)) ↔ ([𝐴 / 𝑥]𝐵 = 𝐶[𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶))))
42, 3mpbid 232 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶[𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶)))
5 sbcal 3855 . . . 4 ([𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐵𝑦𝐶))
64, 5bitrdi 287 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐵𝑦𝐶)))
7 sbcbig 3846 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶)))
87albidv 1918 . . 3 (𝐴𝑉 → (∀𝑦[𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ ∀𝑦([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶)))
9 sbcel2 4424 . . . . . 6 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵)
109a1i 11 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵))
11 sbcel2 4424 . . . . . 6 ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)
1211a1i 11 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶))
1310, 12bibi12d 345 . . . 4 (𝐴𝑉 → (([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ (𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
1413albidv 1918 . . 3 (𝐴𝑉 → (∀𝑦([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
156, 8, 143bitrd 305 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
16 dfcleq 2728 . 2 (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))
1715, 16bitr4di 289 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2106  [wsbc 3791  csb 3908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-nul 4340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator