Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagcg Structured version   Visualization version   GIF version

Theorem bj-tagcg 36980
Description: Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagcg (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ tag 𝐵))

Proof of Theorem bj-tagcg
StepHypRef Expression
1 bj-snglc 36964 . 2 (𝐴𝐵 ↔ {𝐴} ∈ sngl 𝐵)
2 bj-sngltag 36978 . 2 (𝐴𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵))
31, 2bitrid 283 1 (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ tag 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  {csn 4634  sngl bj-csngl 36960  tag bj-ctag 36969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3071  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-sn 4635  df-pr 4637  df-bj-sngl 36961  df-bj-tag 36970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator