Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagcg Structured version   Visualization version   GIF version

Theorem bj-tagcg 35861
Description: Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagcg (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ tag 𝐵))

Proof of Theorem bj-tagcg
StepHypRef Expression
1 bj-snglc 35845 . 2 (𝐴𝐵 ↔ {𝐴} ∈ sngl 𝐵)
2 bj-sngltag 35859 . 2 (𝐴𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵))
31, 2bitrid 282 1 (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ tag 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  {csn 4628  sngl bj-csngl 35841  tag bj-ctag 35850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-sn 4629  df-pr 4631  df-bj-sngl 35842  df-bj-tag 35851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator