| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagcg | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-tagcg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ tag 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-snglc 36929 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ sngl 𝐵) | |
| 2 | bj-sngltag 36943 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵)) | |
| 3 | 1, 2 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ {𝐴} ∈ tag 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 {csn 4606 sngl bj-csngl 36925 tag bj-ctag 36934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rex 3060 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-bj-sngl 36926 df-bj-tag 36935 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |