Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagcg Structured version   Visualization version   GIF version

Theorem bj-tagcg 36702
Description: Characterization of the elements of 𝐵 in terms of elements of its tagged version. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagcg (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ tag 𝐵))

Proof of Theorem bj-tagcg
StepHypRef Expression
1 bj-snglc 36686 . 2 (𝐴𝐵 ↔ {𝐴} ∈ sngl 𝐵)
2 bj-sngltag 36700 . 2 (𝐴𝑉 → ({𝐴} ∈ sngl 𝐵 ↔ {𝐴} ∈ tag 𝐵))
31, 2bitrid 282 1 (𝐴𝑉 → (𝐴𝐵 ↔ {𝐴} ∈ tag 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2099  {csn 4623  sngl bj-csngl 36682  tag bj-ctag 36691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rex 3061  df-v 3464  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4323  df-sn 4624  df-pr 4626  df-bj-sngl 36683  df-bj-tag 36692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator