| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-unrab | Structured version Visualization version GIF version | ||
| Description: Generalization of unrab 4315. Equality need not hold. (Contributed by BJ, 21-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-unrab | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜓}) ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4178 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | rabss2 4078 | . . . 4 ⊢ (𝐴 ⊆ (𝐴 ∪ 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑}) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑} |
| 4 | orc 868 | . . . . 5 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) → (𝜑 → (𝜑 ∨ 𝜓))) |
| 6 | 5 | ss2rabi 4077 | . . 3 ⊢ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
| 7 | 3, 6 | sstri 3993 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
| 8 | ssun2 4179 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 9 | rabss2 4078 | . . . 4 ⊢ (𝐵 ⊆ (𝐴 ∪ 𝐵) → {𝑥 ∈ 𝐵 ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜓}) | |
| 10 | 8, 9 | ax-mp 5 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜓} |
| 11 | olc 869 | . . . . 5 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) → (𝜓 → (𝜑 ∨ 𝜓))) |
| 13 | 12 | ss2rabi 4077 | . . 3 ⊢ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
| 14 | 10, 13 | sstri 3993 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
| 15 | 7, 14 | unssi 4191 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜓}) ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 848 ∈ wcel 2108 {crab 3436 ∪ cun 3949 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rab 3437 df-v 3482 df-un 3956 df-ss 3968 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |