Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-unrab Structured version   Visualization version   GIF version

Theorem bj-unrab 34275
Description: Generalization of unrab 4257. Equality need not hold. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
bj-unrab ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜓}) ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem bj-unrab
StepHypRef Expression
1 ssun1 4132 . . . 4 𝐴 ⊆ (𝐴𝐵)
2 rabss2 4038 . . . 4 (𝐴 ⊆ (𝐴𝐵) → {𝑥𝐴𝜑} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ 𝜑})
31, 2ax-mp 5 . . 3 {𝑥𝐴𝜑} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
4 orc 864 . . . . 5 (𝜑 → (𝜑𝜓))
54a1i 11 . . . 4 (𝑥 ∈ (𝐴𝐵) → (𝜑 → (𝜑𝜓)))
65ss2rabi 4037 . . 3 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
73, 6sstri 3960 . 2 {𝑥𝐴𝜑} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
8 ssun2 4133 . . . 4 𝐵 ⊆ (𝐴𝐵)
9 rabss2 4038 . . . 4 (𝐵 ⊆ (𝐴𝐵) → {𝑥𝐵𝜓} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ 𝜓})
108, 9ax-mp 5 . . 3 {𝑥𝐵𝜓} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ 𝜓}
11 olc 865 . . . . 5 (𝜓 → (𝜑𝜓))
1211a1i 11 . . . 4 (𝑥 ∈ (𝐴𝐵) → (𝜓 → (𝜑𝜓)))
1312ss2rabi 4037 . . 3 {𝑥 ∈ (𝐴𝐵) ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
1410, 13sstri 3960 . 2 {𝑥𝐵𝜓} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
157, 14unssi 4145 1 ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜓}) ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  wcel 2115  {crab 3136  cun 3916  wss 3918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3137  df-rab 3141  df-v 3481  df-un 3923  df-in 3925  df-ss 3935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator