![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-unrab | Structured version Visualization version GIF version |
Description: Generalization of unrab 4320. Equality need not hold. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
bj-unrab | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜓}) ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4187 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | rabss2 4087 | . . . 4 ⊢ (𝐴 ⊆ (𝐴 ∪ 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑}) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑} |
4 | orc 867 | . . . . 5 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) → (𝜑 → (𝜑 ∨ 𝜓))) |
6 | 5 | ss2rabi 4086 | . . 3 ⊢ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
7 | 3, 6 | sstri 4004 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
8 | ssun2 4188 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
9 | rabss2 4087 | . . . 4 ⊢ (𝐵 ⊆ (𝐴 ∪ 𝐵) → {𝑥 ∈ 𝐵 ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜓}) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜓} |
11 | olc 868 | . . . . 5 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) → (𝜓 → (𝜑 ∨ 𝜓))) |
13 | 12 | ss2rabi 4086 | . . 3 ⊢ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
14 | 10, 13 | sstri 4004 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
15 | 7, 14 | unssi 4200 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜓}) ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 ∈ wcel 2105 {crab 3432 ∪ cun 3960 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rab 3433 df-v 3479 df-un 3967 df-ss 3979 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |