![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-unrab | Structured version Visualization version GIF version |
Description: Generalization of unrab 4124. Equality need not hold. (Contributed by BJ, 21-Apr-2019.) |
Ref | Expression |
---|---|
bj-unrab | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜓}) ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3999 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | rabss2 3906 | . . . 4 ⊢ (𝐴 ⊆ (𝐴 ∪ 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑}) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑} |
4 | orc 856 | . . . . 5 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) → (𝜑 → (𝜑 ∨ 𝜓))) |
6 | 5 | ss2rabi 3905 | . . 3 ⊢ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
7 | 3, 6 | sstri 3830 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
8 | ssun2 4000 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
9 | rabss2 3906 | . . . 4 ⊢ (𝐵 ⊆ (𝐴 ∪ 𝐵) → {𝑥 ∈ 𝐵 ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜓}) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜓} |
11 | olc 857 | . . . . 5 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) → (𝜓 → (𝜑 ∨ 𝜓))) |
13 | 12 | ss2rabi 3905 | . . 3 ⊢ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
14 | 10, 13 | sstri 3830 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
15 | 7, 14 | unssi 4011 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜓}) ⊆ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ (𝜑 ∨ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 836 ∈ wcel 2107 {crab 3094 ∪ cun 3790 ⊆ wss 3792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rab 3099 df-v 3400 df-un 3797 df-in 3799 df-ss 3806 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |