Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-unrab Structured version   Visualization version   GIF version

Theorem bj-unrab 36908
Description: Generalization of unrab 4320. Equality need not hold. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
bj-unrab ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜓}) ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem bj-unrab
StepHypRef Expression
1 ssun1 4187 . . . 4 𝐴 ⊆ (𝐴𝐵)
2 rabss2 4087 . . . 4 (𝐴 ⊆ (𝐴𝐵) → {𝑥𝐴𝜑} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ 𝜑})
31, 2ax-mp 5 . . 3 {𝑥𝐴𝜑} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
4 orc 867 . . . . 5 (𝜑 → (𝜑𝜓))
54a1i 11 . . . 4 (𝑥 ∈ (𝐴𝐵) → (𝜑 → (𝜑𝜓)))
65ss2rabi 4086 . . 3 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
73, 6sstri 4004 . 2 {𝑥𝐴𝜑} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
8 ssun2 4188 . . . 4 𝐵 ⊆ (𝐴𝐵)
9 rabss2 4087 . . . 4 (𝐵 ⊆ (𝐴𝐵) → {𝑥𝐵𝜓} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ 𝜓})
108, 9ax-mp 5 . . 3 {𝑥𝐵𝜓} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ 𝜓}
11 olc 868 . . . . 5 (𝜓 → (𝜑𝜓))
1211a1i 11 . . . 4 (𝑥 ∈ (𝐴𝐵) → (𝜓 → (𝜑𝜓)))
1312ss2rabi 4086 . . 3 {𝑥 ∈ (𝐴𝐵) ∣ 𝜓} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
1410, 13sstri 4004 . 2 {𝑥𝐵𝜓} ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
157, 14unssi 4200 1 ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜓}) ⊆ {𝑥 ∈ (𝐴𝐵) ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wcel 2105  {crab 3432  cun 3960  wss 3962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ral 3059  df-rab 3433  df-v 3479  df-un 3967  df-ss 3979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator