Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj551 Structured version   Visualization version   GIF version

Theorem bnj551 34720
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj551 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)

Proof of Theorem bnj551
StepHypRef Expression
1 eqtr2 2764 . 2 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → suc 𝑝 = suc 𝑖)
2 suc11reg 9690 . 2 (suc 𝑝 = suc 𝑖𝑝 = 𝑖)
31, 2sylib 218 1 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  suc csuc 6399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772  ax-reg 9663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-eprel 5599  df-fr 5652  df-suc 6403
This theorem is referenced by:  bnj554  34877  bnj557  34879  bnj966  34922
  Copyright terms: Public domain W3C validator