Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj551 Structured version   Visualization version   GIF version

Theorem bnj551 32722
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj551 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)

Proof of Theorem bnj551
StepHypRef Expression
1 eqtr2 2762 . 2 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → suc 𝑝 = suc 𝑖)
2 suc11reg 9377 . 2 (suc 𝑝 = suc 𝑖𝑝 = 𝑖)
31, 2sylib 217 1 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-eprel 5495  df-fr 5544  df-suc 6272
This theorem is referenced by:  bnj554  32879  bnj557  32881  bnj966  32924
  Copyright terms: Public domain W3C validator