Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj551 Structured version   Visualization version   GIF version

Theorem bnj551 33741
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj551 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)

Proof of Theorem bnj551
StepHypRef Expression
1 eqtr2 2756 . 2 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → suc 𝑝 = suc 𝑖)
2 suc11reg 9610 . 2 (suc 𝑝 = suc 𝑖𝑝 = 𝑖)
31, 2sylib 217 1 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721  ax-reg 9583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-eprel 5579  df-fr 5630  df-suc 6367
This theorem is referenced by:  bnj554  33898  bnj557  33900  bnj966  33943
  Copyright terms: Public domain W3C validator