| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj551 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj551 | ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2 2752 | . 2 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → suc 𝑝 = suc 𝑖) | |
| 2 | suc11reg 9509 | . 2 ⊢ (suc 𝑝 = suc 𝑖 ↔ 𝑝 = 𝑖) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-eprel 5514 df-fr 5567 df-suc 6312 |
| This theorem is referenced by: bnj554 34911 bnj557 34913 bnj966 34956 |
| Copyright terms: Public domain | W3C validator |