Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj551 Structured version   Visualization version   GIF version

Theorem bnj551 32622
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj551 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)

Proof of Theorem bnj551
StepHypRef Expression
1 eqtr2 2762 . 2 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → suc 𝑝 = suc 𝑖)
2 suc11reg 9307 . 2 (suc 𝑝 = suc 𝑖𝑝 = 𝑖)
31, 2sylib 217 1 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-eprel 5486  df-fr 5535  df-suc 6257
This theorem is referenced by:  bnj554  32779  bnj557  32781  bnj966  32824
  Copyright terms: Public domain W3C validator