![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj551 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj551 | ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2 2756 | . 2 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → suc 𝑝 = suc 𝑖) | |
2 | suc11reg 9598 | . 2 ⊢ (suc 𝑝 = suc 𝑖 ↔ 𝑝 = 𝑖) | |
3 | 1, 2 | sylib 217 | 1 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 suc csuc 6356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5293 ax-nul 5300 ax-pr 5421 ax-un 7709 ax-reg 9571 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5143 df-opab 5205 df-eprel 5574 df-fr 5625 df-suc 6360 |
This theorem is referenced by: bnj554 33805 bnj557 33807 bnj966 33850 |
Copyright terms: Public domain | W3C validator |