| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj551 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj551 | ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2 2751 | . 2 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → suc 𝑝 = suc 𝑖) | |
| 2 | suc11reg 9579 | . 2 ⊢ (suc 𝑝 = suc 𝑖 ↔ 𝑝 = 𝑖) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-reg 9552 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-eprel 5541 df-fr 5594 df-suc 6341 |
| This theorem is referenced by: bnj554 34896 bnj557 34898 bnj966 34941 |
| Copyright terms: Public domain | W3C validator |