MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuci Structured version   Visualization version   GIF version

Theorem elsuci 6317
Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 6257 . . . 4 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2830 . . 3 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 4079 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
42, 3bitri 274 . 2 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
5 elsni 4575 . . 3 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
65orim2i 907 . 2 ((𝐴𝐵𝐴 ∈ {𝐵}) → (𝐴𝐵𝐴 = 𝐵))
74, 6sylbi 216 1 (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1539  wcel 2108  cun 3881  {csn 4558  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-sn 4559  df-suc 6257
This theorem is referenced by:  suctr  6334  trsucss  6336  ordnbtwn  6341  suc11  6354  tfrlem11  8190  omordi  8359  nnmordi  8424  phplem3  8894  pssnn  8913  pssnnOLD  8969  r1sdom  9463  cfsuc  9944  axdc3lem2  10138  axdc3lem4  10140  indpi  10594  bnj563  32623  bnj964  32823  ontgval  34547  onsucconni  34553  suctrALT  42335  suctrALT2VD  42345  suctrALT2  42346  suctrALTcf  42431  suctrALTcfVD  42432  suctrALT3  42433
  Copyright terms: Public domain W3C validator