MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuci Structured version   Visualization version   GIF version

Theorem elsuci 6462
Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 6401 . . . 4 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2836 . . 3 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 4176 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
42, 3bitri 275 . 2 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
5 elsni 4665 . . 3 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
65orim2i 909 . 2 ((𝐴𝐵𝐴 ∈ {𝐵}) → (𝐴𝐵𝐴 = 𝐵))
74, 6sylbi 217 1 (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846   = wceq 1537  wcel 2108  cun 3974  {csn 4648  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-sn 4649  df-suc 6401
This theorem is referenced by:  suctr  6481  trsucss  6483  ordnbtwn  6488  suc11  6502  tfrlem11  8444  omordi  8622  nnmordi  8687  pssnn  9234  phplem3OLD  9282  r1sdom  9843  cfsuc  10326  axdc3lem2  10520  axdc3lem4  10522  indpi  10976  constrmon  33734  bnj563  34719  bnj964  34919  ontgval  36397  onsucconni  36403  suctrALT  44797  suctrALT2VD  44807  suctrALT2  44808  suctrALTcf  44893  suctrALTcfVD  44894  suctrALT3  44895
  Copyright terms: Public domain W3C validator