MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuci Structured version   Visualization version   GIF version

Theorem elsuci 6426
Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 6363 . . . 4 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2827 . . 3 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 4133 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
42, 3bitri 275 . 2 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
5 elsni 4623 . . 3 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
65orim2i 910 . 2 ((𝐴𝐵𝐴 ∈ {𝐵}) → (𝐴𝐵𝐴 = 𝐵))
74, 6sylbi 217 1 (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  cun 3929  {csn 4606  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-sn 4607  df-suc 6363
This theorem is referenced by:  suctr  6445  trsucss  6447  ordnbtwn  6452  suc11  6466  tfrlem11  8407  omordi  8583  nnmordi  8648  pssnn  9187  phplem3OLD  9235  r1sdom  9793  cfsuc  10276  axdc3lem2  10470  axdc3lem4  10472  indpi  10926  constrmon  33783  bnj563  34779  bnj964  34979  ontgval  36454  onsucconni  36460  suctrALT  44817  suctrALT2VD  44827  suctrALT2  44828  suctrALTcf  44913  suctrALTcfVD  44914  suctrALT3  44915
  Copyright terms: Public domain W3C validator