![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsuci | Structured version Visualization version GIF version |
Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
elsuci | ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6382 | . . . 4 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
2 | 1 | eleq2i 2818 | . . 3 ⊢ (𝐴 ∈ suc 𝐵 ↔ 𝐴 ∈ (𝐵 ∪ {𝐵})) |
3 | elun 4148 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) |
5 | elsni 4650 | . . 3 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
6 | 5 | orim2i 908 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵}) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
7 | 4, 6 | sylbi 216 | 1 ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∪ cun 3945 {csn 4633 suc csuc 6378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-un 3952 df-sn 4634 df-suc 6382 |
This theorem is referenced by: suctr 6462 trsucss 6464 ordnbtwn 6469 suc11 6483 tfrlem11 8418 omordi 8596 nnmordi 8661 pssnn 9206 phplem3OLD 9253 pssnnOLD 9299 r1sdom 9817 cfsuc 10300 axdc3lem2 10494 axdc3lem4 10496 indpi 10950 constrmon 33602 bnj563 34588 bnj964 34788 ontgval 36143 onsucconni 36149 suctrALT 44502 suctrALT2VD 44512 suctrALT2 44513 suctrALTcf 44598 suctrALTcfVD 44599 suctrALT3 44600 |
Copyright terms: Public domain | W3C validator |