MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuci Structured version   Visualization version   GIF version

Theorem elsuci 6332
Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 6272 . . . 4 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2830 . . 3 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 4083 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
42, 3bitri 274 . 2 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
5 elsni 4578 . . 3 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
65orim2i 908 . 2 ((𝐴𝐵𝐴 ∈ {𝐵}) → (𝐴𝐵𝐴 = 𝐵))
74, 6sylbi 216 1 (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1539  wcel 2106  cun 3885  {csn 4561  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-sn 4562  df-suc 6272
This theorem is referenced by:  suctr  6349  trsucss  6351  ordnbtwn  6356  suc11  6369  tfrlem11  8219  omordi  8397  nnmordi  8462  pssnn  8951  phplem3OLD  9002  pssnnOLD  9040  r1sdom  9532  cfsuc  10013  axdc3lem2  10207  axdc3lem4  10209  indpi  10663  bnj563  32723  bnj964  32923  ontgval  34620  onsucconni  34626  suctrALT  42446  suctrALT2VD  42456  suctrALT2  42457  suctrALTcf  42542  suctrALTcfVD  42543  suctrALT3  42544
  Copyright terms: Public domain W3C validator