| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsuci | Structured version Visualization version GIF version | ||
| Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsuci | ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6326 | . . . 4 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
| 2 | 1 | eleq2i 2820 | . . 3 ⊢ (𝐴 ∈ suc 𝐵 ↔ 𝐴 ∈ (𝐵 ∪ {𝐵})) |
| 3 | elun 4112 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) |
| 5 | elsni 4602 | . . 3 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 6 | 5 | orim2i 910 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵}) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| 7 | 4, 6 | sylbi 217 | 1 ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 {csn 4585 suc csuc 6322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-sn 4586 df-suc 6326 |
| This theorem is referenced by: suctr 6408 trsucss 6410 ordnbtwn 6415 suc11 6429 tfrlem11 8333 omordi 8507 nnmordi 8572 pssnn 9109 r1sdom 9703 cfsuc 10186 axdc3lem2 10380 axdc3lem4 10382 indpi 10836 constrmon 33727 bnj563 34726 bnj964 34926 ontgval 36412 onsucconni 36418 suctrALT 44808 suctrALT2VD 44818 suctrALT2 44819 suctrALTcf 44904 suctrALTcfVD 44905 suctrALT3 44906 |
| Copyright terms: Public domain | W3C validator |