MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsuci Structured version   Visualization version   GIF version

Theorem elsuci 6429
Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. Lemma 1.13 of [Schloeder] p. 2. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 6368 . . . 4 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2826 . . 3 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 4148 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
42, 3bitri 275 . 2 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
5 elsni 4645 . . 3 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
65orim2i 910 . 2 ((𝐴𝐵𝐴 ∈ {𝐵}) → (𝐴𝐵𝐴 = 𝐵))
74, 6sylbi 216 1 (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846   = wceq 1542  wcel 2107  cun 3946  {csn 4628  suc csuc 6364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3953  df-sn 4629  df-suc 6368
This theorem is referenced by:  suctr  6448  trsucss  6450  ordnbtwn  6455  suc11  6469  tfrlem11  8385  omordi  8563  nnmordi  8628  pssnn  9165  phplem3OLD  9216  pssnnOLD  9262  r1sdom  9766  cfsuc  10249  axdc3lem2  10443  axdc3lem4  10445  indpi  10899  bnj563  33743  bnj964  33943  ontgval  35305  onsucconni  35311  suctrALT  43573  suctrALT2VD  43583  suctrALT2  43584  suctrALTcf  43669  suctrALTcfVD  43670  suctrALT3  43671
  Copyright terms: Public domain W3C validator