| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj126 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj150 34859. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj126.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| bnj126.2 | ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) |
| bnj126.3 | ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) |
| bnj126.4 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
| Ref | Expression |
|---|---|
| bnj126 | ⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj126.3 | . 2 ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) | |
| 2 | bnj126.2 | . . 3 ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) | |
| 3 | 2 | sbcbii 3799 | . 2 ⊢ ([𝐹 / 𝑓]𝜓′ ↔ [𝐹 / 𝑓][1o / 𝑛]𝜓) |
| 4 | bnj126.1 | . . 3 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 5 | bnj126.4 | . . . 4 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
| 6 | 5 | bnj95 34847 | . . 3 ⊢ 𝐹 ∈ V |
| 7 | 4, 6 | bnj106 34851 | . 2 ⊢ ([𝐹 / 𝑓][1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 8 | 1, 3, 7 | 3bitri 297 | 1 ⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 [wsbc 3742 ∅c0 4284 {csn 4577 〈cop 4583 ∪ ciun 4941 suc csuc 6309 ‘cfv 6482 ωcom 7799 1oc1o 8381 predc-bnj14 34671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-pw 4553 df-sn 4578 df-pr 4580 df-uni 4859 df-iun 4943 df-br 5093 df-suc 6313 df-iota 6438 df-fv 6490 df-1o 8388 |
| This theorem is referenced by: bnj150 34859 bnj153 34863 |
| Copyright terms: Public domain | W3C validator |