Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj126 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj150 32835. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj126.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj126.2 | ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) |
bnj126.3 | ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) |
bnj126.4 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
Ref | Expression |
---|---|
bnj126 | ⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj126.3 | . 2 ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) | |
2 | bnj126.2 | . . 3 ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) | |
3 | 2 | sbcbii 3780 | . 2 ⊢ ([𝐹 / 𝑓]𝜓′ ↔ [𝐹 / 𝑓][1o / 𝑛]𝜓) |
4 | bnj126.1 | . . 3 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
5 | bnj126.4 | . . . 4 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
6 | 5 | bnj95 32823 | . . 3 ⊢ 𝐹 ∈ V |
7 | 4, 6 | bnj106 32827 | . 2 ⊢ ([𝐹 / 𝑓][1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
8 | 1, 3, 7 | 3bitri 296 | 1 ⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∀wral 3065 [wsbc 3719 ∅c0 4261 {csn 4566 〈cop 4572 ∪ ciun 4929 suc csuc 6265 ‘cfv 6430 ωcom 7700 1oc1o 8274 predc-bnj14 32646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-pw 4540 df-sn 4567 df-pr 4569 df-uni 4845 df-iun 4931 df-br 5079 df-suc 6269 df-iota 6388 df-fv 6438 df-1o 8281 |
This theorem is referenced by: bnj150 32835 bnj153 32839 |
Copyright terms: Public domain | W3C validator |