| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj126 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj150 34853. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj126.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| bnj126.2 | ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) |
| bnj126.3 | ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) |
| bnj126.4 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
| Ref | Expression |
|---|---|
| bnj126 | ⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj126.3 | . 2 ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) | |
| 2 | bnj126.2 | . . 3 ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) | |
| 3 | 2 | sbcbii 3822 | . 2 ⊢ ([𝐹 / 𝑓]𝜓′ ↔ [𝐹 / 𝑓][1o / 𝑛]𝜓) |
| 4 | bnj126.1 | . . 3 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 5 | bnj126.4 | . . . 4 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
| 6 | 5 | bnj95 34841 | . . 3 ⊢ 𝐹 ∈ V |
| 7 | 4, 6 | bnj106 34845 | . 2 ⊢ ([𝐹 / 𝑓][1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 8 | 1, 3, 7 | 3bitri 297 | 1 ⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 [wsbc 3765 ∅c0 4308 {csn 4601 〈cop 4607 ∪ ciun 4967 suc csuc 6354 ‘cfv 6530 ωcom 7859 1oc1o 8471 predc-bnj14 34665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-pw 4577 df-sn 4602 df-pr 4604 df-uni 4884 df-iun 4969 df-br 5120 df-suc 6358 df-iota 6483 df-fv 6538 df-1o 8478 |
| This theorem is referenced by: bnj150 34853 bnj153 34857 |
| Copyright terms: Public domain | W3C validator |