Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj126 Structured version   Visualization version   GIF version

Theorem bnj126 31460
Description: Technical lemma for bnj150 31463. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj126.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj126.2 (𝜓′[1𝑜 / 𝑛]𝜓)
bnj126.3 (𝜓″[𝐹 / 𝑓]𝜓′)
bnj126.4 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj126 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑓,𝑛   𝑓,𝐹,𝑖,𝑦   𝑅,𝑓,𝑛   𝑖,𝑛,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝐴(𝑥,𝑦,𝑖)   𝑅(𝑥,𝑦,𝑖)   𝐹(𝑥,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓″(𝑥,𝑦,𝑓,𝑖,𝑛)

Proof of Theorem bnj126
StepHypRef Expression
1 bnj126.3 . 2 (𝜓″[𝐹 / 𝑓]𝜓′)
2 bnj126.2 . . 3 (𝜓′[1𝑜 / 𝑛]𝜓)
32sbcbii 3689 . 2 ([𝐹 / 𝑓]𝜓′[𝐹 / 𝑓][1𝑜 / 𝑛]𝜓)
4 bnj126.1 . . 3 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5 bnj126.4 . . . 4 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
65bnj95 31451 . . 3 𝐹 ∈ V
74, 6bnj106 31455 . 2 ([𝐹 / 𝑓][1𝑜 / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
81, 3, 73bitri 289 1 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1653  wcel 2157  wral 3089  [wsbc 3633  c0 4115  {csn 4368  cop 4374   ciun 4710  suc csuc 5943  cfv 6101  ωcom 7299  1𝑜c1o 7792   predc-bnj14 31274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-pw 4351  df-sn 4369  df-pr 4371  df-uni 4629  df-iun 4712  df-br 4844  df-suc 5947  df-iota 6064  df-fv 6109  df-1o 7799
This theorem is referenced by:  bnj150  31463  bnj153  31467
  Copyright terms: Public domain W3C validator