Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj126 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj150 32389. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj126.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj126.2 | ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) |
bnj126.3 | ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) |
bnj126.4 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
Ref | Expression |
---|---|
bnj126 | ⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj126.3 | . 2 ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) | |
2 | bnj126.2 | . . 3 ⊢ (𝜓′ ↔ [1o / 𝑛]𝜓) | |
3 | 2 | sbcbii 3755 | . 2 ⊢ ([𝐹 / 𝑓]𝜓′ ↔ [𝐹 / 𝑓][1o / 𝑛]𝜓) |
4 | bnj126.1 | . . 3 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
5 | bnj126.4 | . . . 4 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
6 | 5 | bnj95 32377 | . . 3 ⊢ 𝐹 ∈ V |
7 | 4, 6 | bnj106 32381 | . 2 ⊢ ([𝐹 / 𝑓][1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
8 | 1, 3, 7 | 3bitri 300 | 1 ⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = ∪ 𝑦 ∈ (𝐹‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ∀wral 3070 [wsbc 3698 ∅c0 4227 {csn 4525 〈cop 4531 ∪ ciun 4886 suc csuc 6176 ‘cfv 6340 ωcom 7585 1oc1o 8111 predc-bnj14 32199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-pw 4499 df-sn 4526 df-pr 4528 df-uni 4802 df-iun 4888 df-br 5037 df-suc 6180 df-iota 6299 df-fv 6348 df-1o 8118 |
This theorem is referenced by: bnj150 32389 bnj153 32393 |
Copyright terms: Public domain | W3C validator |