![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breldmd | Structured version Visualization version GIF version |
Description: Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
Ref | Expression |
---|---|
breldmd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
breldmd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
breldmd.3 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
breldmd | ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breldmd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | breldmd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
3 | breldmd.3 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
4 | breldmg 5902 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
5 | 1, 2, 3, 4 | syl3anc 1368 | 1 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 class class class wbr 5141 dom cdm 5669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-dm 5679 |
This theorem is referenced by: fvelimad 6952 climresdm 45119 xlimliminflimsup 45131 |
Copyright terms: Public domain | W3C validator |