Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breldmd | Structured version Visualization version GIF version |
Description: Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
Ref | Expression |
---|---|
breldmd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
breldmd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
breldmd.3 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
breldmd | ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breldmd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | breldmd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
3 | breldmd.3 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
4 | breldmg 5818 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-dm 5599 |
This theorem is referenced by: fvelimad 6836 climresdm 43391 xlimliminflimsup 43403 |
Copyright terms: Public domain | W3C validator |