Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  breldmd Structured version   Visualization version   GIF version

Theorem breldmd 40791
 Description: Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
breldmd.1 (𝜑𝐴𝐶)
breldmd.2 (𝜑𝐵𝐷)
breldmd.3 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
breldmd (𝜑𝐴 ∈ dom 𝑅)

Proof of Theorem breldmd
StepHypRef Expression
1 breldmd.1 . 2 (𝜑𝐴𝐶)
2 breldmd.2 . 2 (𝜑𝐵𝐷)
3 breldmd.3 . 2 (𝜑𝐴𝑅𝐵)
4 breldmg 5621 . 2 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
51, 2, 3, 4syl3anc 1351 1 (𝜑𝐴 ∈ dom 𝑅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2048   class class class wbr 4923  dom cdm 5400 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-ext 2745 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-rab 3091  df-v 3411  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-br 4924  df-dm 5410 This theorem is referenced by:  fvelimad  40891  climresdm  41508  xlimliminflimsup  41520
 Copyright terms: Public domain W3C validator