MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breldmd Structured version   Visualization version   GIF version

Theorem breldmd 5810
Description: Membership of first of a binary relation in a domain. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
breldmd.1 (𝜑𝐴𝐶)
breldmd.2 (𝜑𝐵𝐷)
breldmd.3 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
breldmd (𝜑𝐴 ∈ dom 𝑅)

Proof of Theorem breldmd
StepHypRef Expression
1 breldmd.1 . 2 (𝜑𝐴𝐶)
2 breldmd.2 . 2 (𝜑𝐵𝐷)
3 breldmd.3 . 2 (𝜑𝐴𝑅𝐵)
4 breldmg 5807 . 2 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
51, 2, 3, 4syl3anc 1369 1 (𝜑𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-dm 5590
This theorem is referenced by:  fvelimad  6818  climresdm  43281  xlimliminflimsup  43293
  Copyright terms: Public domain W3C validator