MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimad Structured version   Visualization version   GIF version

Theorem fvelimad 6897
Description: Function value in an image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fvelimad.x 𝑥𝐹
fvelimad.f (𝜑𝐹 Fn 𝐴)
fvelimad.c (𝜑𝐶 ∈ (𝐹𝐵))
Assertion
Ref Expression
fvelimad (𝜑 → ∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem fvelimad
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvelimad.c . . . 4 (𝜑𝐶 ∈ (𝐹𝐵))
2 elimag 6019 . . . . 5 (𝐶 ∈ (𝐹𝐵) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 𝑦𝐹𝐶))
32ibi 267 . . . 4 (𝐶 ∈ (𝐹𝐵) → ∃𝑦𝐵 𝑦𝐹𝐶)
41, 3syl 17 . . 3 (𝜑 → ∃𝑦𝐵 𝑦𝐹𝐶)
5 nfv 1915 . . . 4 𝑦𝜑
6 nfre1 3258 . . . 4 𝑦𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶
7 vex 3441 . . . . . . . . . . 11 𝑦 ∈ V
87a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐹𝐶) → 𝑦 ∈ V)
91adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐹𝐶) → 𝐶 ∈ (𝐹𝐵))
10 simpr 484 . . . . . . . . . 10 ((𝜑𝑦𝐹𝐶) → 𝑦𝐹𝐶)
118, 9, 10breldmd 5858 . . . . . . . . 9 ((𝜑𝑦𝐹𝐶) → 𝑦 ∈ dom 𝐹)
12 fvelimad.f . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐴)
1312fndmd 6593 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐹𝐶) → dom 𝐹 = 𝐴)
1511, 14eleqtrd 2835 . . . . . . . 8 ((𝜑𝑦𝐹𝐶) → 𝑦𝐴)
16153adant2 1131 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦𝐴)
17 simp2 1137 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦𝐵)
1816, 17elind 4149 . . . . . 6 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦 ∈ (𝐴𝐵))
19 fnfun 6588 . . . . . . . . 9 (𝐹 Fn 𝐴 → Fun 𝐹)
2012, 19syl 17 . . . . . . . 8 (𝜑 → Fun 𝐹)
21203ad2ant1 1133 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → Fun 𝐹)
22 simp3 1138 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦𝐹𝐶)
23 funbrfv 6878 . . . . . . 7 (Fun 𝐹 → (𝑦𝐹𝐶 → (𝐹𝑦) = 𝐶))
2421, 22, 23sylc 65 . . . . . 6 ((𝜑𝑦𝐵𝑦𝐹𝐶) → (𝐹𝑦) = 𝐶)
25 rspe 3223 . . . . . 6 ((𝑦 ∈ (𝐴𝐵) ∧ (𝐹𝑦) = 𝐶) → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
2618, 24, 25syl2anc 584 . . . . 5 ((𝜑𝑦𝐵𝑦𝐹𝐶) → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
27263exp 1119 . . . 4 (𝜑 → (𝑦𝐵 → (𝑦𝐹𝐶 → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)))
285, 6, 27rexlimd 3240 . . 3 (𝜑 → (∃𝑦𝐵 𝑦𝐹𝐶 → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶))
294, 28mpd 15 . 2 (𝜑 → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
30 nfv 1915 . . 3 𝑦(𝐹𝑥) = 𝐶
31 fvelimad.x . . . . 5 𝑥𝐹
32 nfcv 2895 . . . . 5 𝑥𝑦
3331, 32nffv 6840 . . . 4 𝑥(𝐹𝑦)
3433nfeq1 2911 . . 3 𝑥(𝐹𝑦) = 𝐶
35 fveqeq2 6839 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝑦) = 𝐶))
3630, 34, 35cbvrexw 3276 . 2 (∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶 ↔ ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
3729, 36sylibr 234 1 (𝜑 → ∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wnfc 2880  wrex 3057  Vcvv 3437  cin 3897   class class class wbr 5095  dom cdm 5621  cima 5624  Fun wfun 6482   Fn wfn 6483  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-fv 6496
This theorem is referenced by:  cyc3evpm  33128  cycpmgcl  33131  cycpmconjslem2  33133  cyc3conja  33135  limsupmnflem  45845  liminfvalxr  45908
  Copyright terms: Public domain W3C validator