Step | Hyp | Ref
| Expression |
1 | | fvelimad.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (𝐹 “ 𝐵)) |
2 | | elimag 5974 |
. . . . 5
⊢ (𝐶 ∈ (𝐹 “ 𝐵) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑦𝐹𝐶)) |
3 | 2 | ibi 266 |
. . . 4
⊢ (𝐶 ∈ (𝐹 “ 𝐵) → ∃𝑦 ∈ 𝐵 𝑦𝐹𝐶) |
4 | 1, 3 | syl 17 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ 𝐵 𝑦𝐹𝐶) |
5 | | nfv 1913 |
. . . 4
⊢
Ⅎ𝑦𝜑 |
6 | | nfre1 3267 |
. . . 4
⊢
Ⅎ𝑦∃𝑦 ∈ (𝐴 ∩ 𝐵)(𝐹‘𝑦) = 𝐶 |
7 | | vex 3438 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
8 | 7 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦𝐹𝐶) → 𝑦 ∈ V) |
9 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦𝐹𝐶) → 𝐶 ∈ (𝐹 “ 𝐵)) |
10 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦𝐹𝐶) → 𝑦𝐹𝐶) |
11 | 8, 9, 10 | breldmd 5825 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦𝐹𝐶) → 𝑦 ∈ dom 𝐹) |
12 | | fvelimad.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn 𝐴) |
13 | 12 | fndmd 6557 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐹 = 𝐴) |
14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦𝐹𝐶) → dom 𝐹 = 𝐴) |
15 | 11, 14 | eleqtrd 2836 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦𝐹𝐶) → 𝑦 ∈ 𝐴) |
16 | 15 | 3adant2 1129 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝐹𝐶) → 𝑦 ∈ 𝐴) |
17 | | simp2 1135 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝐹𝐶) → 𝑦 ∈ 𝐵) |
18 | 16, 17 | elind 4131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝐹𝐶) → 𝑦 ∈ (𝐴 ∩ 𝐵)) |
19 | | fnfun 6552 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
20 | 12, 19 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → Fun 𝐹) |
21 | 20 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝐹𝐶) → Fun 𝐹) |
22 | | simp3 1136 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝐹𝐶) → 𝑦𝐹𝐶) |
23 | | funbrfv 6840 |
. . . . . . 7
⊢ (Fun
𝐹 → (𝑦𝐹𝐶 → (𝐹‘𝑦) = 𝐶)) |
24 | 21, 22, 23 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝐹𝐶) → (𝐹‘𝑦) = 𝐶) |
25 | | rspe 3265 |
. . . . . 6
⊢ ((𝑦 ∈ (𝐴 ∩ 𝐵) ∧ (𝐹‘𝑦) = 𝐶) → ∃𝑦 ∈ (𝐴 ∩ 𝐵)(𝐹‘𝑦) = 𝐶) |
26 | 18, 24, 25 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦𝐹𝐶) → ∃𝑦 ∈ (𝐴 ∩ 𝐵)(𝐹‘𝑦) = 𝐶) |
27 | 26 | 3exp 1117 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐵 → (𝑦𝐹𝐶 → ∃𝑦 ∈ (𝐴 ∩ 𝐵)(𝐹‘𝑦) = 𝐶))) |
28 | 5, 6, 27 | rexlimd 3278 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝑦𝐹𝐶 → ∃𝑦 ∈ (𝐴 ∩ 𝐵)(𝐹‘𝑦) = 𝐶)) |
29 | 4, 28 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ (𝐴 ∩ 𝐵)(𝐹‘𝑦) = 𝐶) |
30 | | nfv 1913 |
. . 3
⊢
Ⅎ𝑦(𝐹‘𝑥) = 𝐶 |
31 | | fvelimad.x |
. . . . 5
⊢
Ⅎ𝑥𝐹 |
32 | | nfcv 2902 |
. . . . 5
⊢
Ⅎ𝑥𝑦 |
33 | 31, 32 | nffv 6802 |
. . . 4
⊢
Ⅎ𝑥(𝐹‘𝑦) |
34 | 33 | nfeq1 2917 |
. . 3
⊢
Ⅎ𝑥(𝐹‘𝑦) = 𝐶 |
35 | | fveqeq2 6801 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = 𝐶 ↔ (𝐹‘𝑦) = 𝐶)) |
36 | 30, 34, 35 | cbvrexw 3376 |
. 2
⊢
(∃𝑥 ∈
(𝐴 ∩ 𝐵)(𝐹‘𝑥) = 𝐶 ↔ ∃𝑦 ∈ (𝐴 ∩ 𝐵)(𝐹‘𝑦) = 𝐶) |
37 | 29, 36 | sylibr 233 |
1
⊢ (𝜑 → ∃𝑥 ∈ (𝐴 ∩ 𝐵)(𝐹‘𝑥) = 𝐶) |