MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimad Structured version   Visualization version   GIF version

Theorem fvelimad 6856
Description: Function value in an image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fvelimad.x 𝑥𝐹
fvelimad.f (𝜑𝐹 Fn 𝐴)
fvelimad.c (𝜑𝐶 ∈ (𝐹𝐵))
Assertion
Ref Expression
fvelimad (𝜑 → ∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem fvelimad
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvelimad.c . . . 4 (𝜑𝐶 ∈ (𝐹𝐵))
2 elimag 5974 . . . . 5 (𝐶 ∈ (𝐹𝐵) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 𝑦𝐹𝐶))
32ibi 266 . . . 4 (𝐶 ∈ (𝐹𝐵) → ∃𝑦𝐵 𝑦𝐹𝐶)
41, 3syl 17 . . 3 (𝜑 → ∃𝑦𝐵 𝑦𝐹𝐶)
5 nfv 1913 . . . 4 𝑦𝜑
6 nfre1 3267 . . . 4 𝑦𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶
7 vex 3438 . . . . . . . . . . 11 𝑦 ∈ V
87a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐹𝐶) → 𝑦 ∈ V)
91adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐹𝐶) → 𝐶 ∈ (𝐹𝐵))
10 simpr 484 . . . . . . . . . 10 ((𝜑𝑦𝐹𝐶) → 𝑦𝐹𝐶)
118, 9, 10breldmd 5825 . . . . . . . . 9 ((𝜑𝑦𝐹𝐶) → 𝑦 ∈ dom 𝐹)
12 fvelimad.f . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐴)
1312fndmd 6557 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐹𝐶) → dom 𝐹 = 𝐴)
1511, 14eleqtrd 2836 . . . . . . . 8 ((𝜑𝑦𝐹𝐶) → 𝑦𝐴)
16153adant2 1129 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦𝐴)
17 simp2 1135 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦𝐵)
1816, 17elind 4131 . . . . . 6 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦 ∈ (𝐴𝐵))
19 fnfun 6552 . . . . . . . . 9 (𝐹 Fn 𝐴 → Fun 𝐹)
2012, 19syl 17 . . . . . . . 8 (𝜑 → Fun 𝐹)
21203ad2ant1 1131 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → Fun 𝐹)
22 simp3 1136 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦𝐹𝐶)
23 funbrfv 6840 . . . . . . 7 (Fun 𝐹 → (𝑦𝐹𝐶 → (𝐹𝑦) = 𝐶))
2421, 22, 23sylc 65 . . . . . 6 ((𝜑𝑦𝐵𝑦𝐹𝐶) → (𝐹𝑦) = 𝐶)
25 rspe 3265 . . . . . 6 ((𝑦 ∈ (𝐴𝐵) ∧ (𝐹𝑦) = 𝐶) → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
2618, 24, 25syl2anc 583 . . . . 5 ((𝜑𝑦𝐵𝑦𝐹𝐶) → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
27263exp 1117 . . . 4 (𝜑 → (𝑦𝐵 → (𝑦𝐹𝐶 → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)))
285, 6, 27rexlimd 3278 . . 3 (𝜑 → (∃𝑦𝐵 𝑦𝐹𝐶 → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶))
294, 28mpd 15 . 2 (𝜑 → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
30 nfv 1913 . . 3 𝑦(𝐹𝑥) = 𝐶
31 fvelimad.x . . . . 5 𝑥𝐹
32 nfcv 2902 . . . . 5 𝑥𝑦
3331, 32nffv 6802 . . . 4 𝑥(𝐹𝑦)
3433nfeq1 2917 . . 3 𝑥(𝐹𝑦) = 𝐶
35 fveqeq2 6801 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝑦) = 𝐶))
3630, 34, 35cbvrexw 3376 . 2 (∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶 ↔ ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
3729, 36sylibr 233 1 (𝜑 → ∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1537  wcel 2101  wnfc 2882  wrex 3068  Vcvv 3434  cin 3888   class class class wbr 5077  dom cdm 5591  cima 5594  Fun wfun 6441   Fn wfn 6442  cfv 6447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-fv 6455
This theorem is referenced by:  cyc3evpm  31445  cycpmgcl  31448  cycpmconjslem2  31450  cyc3conja  31452  limsupmnflem  43296  liminfvalxr  43359
  Copyright terms: Public domain W3C validator