MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvelimad Structured version   Visualization version   GIF version

Theorem fvelimad 6931
Description: Function value in an image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fvelimad.x 𝑥𝐹
fvelimad.f (𝜑𝐹 Fn 𝐴)
fvelimad.c (𝜑𝐶 ∈ (𝐹𝐵))
Assertion
Ref Expression
fvelimad (𝜑 → ∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem fvelimad
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvelimad.c . . . 4 (𝜑𝐶 ∈ (𝐹𝐵))
2 elimag 6038 . . . . 5 (𝐶 ∈ (𝐹𝐵) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 𝑦𝐹𝐶))
32ibi 267 . . . 4 (𝐶 ∈ (𝐹𝐵) → ∃𝑦𝐵 𝑦𝐹𝐶)
41, 3syl 17 . . 3 (𝜑 → ∃𝑦𝐵 𝑦𝐹𝐶)
5 nfv 1914 . . . 4 𝑦𝜑
6 nfre1 3263 . . . 4 𝑦𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶
7 vex 3454 . . . . . . . . . . 11 𝑦 ∈ V
87a1i 11 . . . . . . . . . 10 ((𝜑𝑦𝐹𝐶) → 𝑦 ∈ V)
91adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐹𝐶) → 𝐶 ∈ (𝐹𝐵))
10 simpr 484 . . . . . . . . . 10 ((𝜑𝑦𝐹𝐶) → 𝑦𝐹𝐶)
118, 9, 10breldmd 5879 . . . . . . . . 9 ((𝜑𝑦𝐹𝐶) → 𝑦 ∈ dom 𝐹)
12 fvelimad.f . . . . . . . . . . 11 (𝜑𝐹 Fn 𝐴)
1312fndmd 6626 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
1413adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐹𝐶) → dom 𝐹 = 𝐴)
1511, 14eleqtrd 2831 . . . . . . . 8 ((𝜑𝑦𝐹𝐶) → 𝑦𝐴)
16153adant2 1131 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦𝐴)
17 simp2 1137 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦𝐵)
1816, 17elind 4166 . . . . . 6 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦 ∈ (𝐴𝐵))
19 fnfun 6621 . . . . . . . . 9 (𝐹 Fn 𝐴 → Fun 𝐹)
2012, 19syl 17 . . . . . . . 8 (𝜑 → Fun 𝐹)
21203ad2ant1 1133 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → Fun 𝐹)
22 simp3 1138 . . . . . . 7 ((𝜑𝑦𝐵𝑦𝐹𝐶) → 𝑦𝐹𝐶)
23 funbrfv 6912 . . . . . . 7 (Fun 𝐹 → (𝑦𝐹𝐶 → (𝐹𝑦) = 𝐶))
2421, 22, 23sylc 65 . . . . . 6 ((𝜑𝑦𝐵𝑦𝐹𝐶) → (𝐹𝑦) = 𝐶)
25 rspe 3228 . . . . . 6 ((𝑦 ∈ (𝐴𝐵) ∧ (𝐹𝑦) = 𝐶) → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
2618, 24, 25syl2anc 584 . . . . 5 ((𝜑𝑦𝐵𝑦𝐹𝐶) → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
27263exp 1119 . . . 4 (𝜑 → (𝑦𝐵 → (𝑦𝐹𝐶 → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)))
285, 6, 27rexlimd 3245 . . 3 (𝜑 → (∃𝑦𝐵 𝑦𝐹𝐶 → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶))
294, 28mpd 15 . 2 (𝜑 → ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
30 nfv 1914 . . 3 𝑦(𝐹𝑥) = 𝐶
31 fvelimad.x . . . . 5 𝑥𝐹
32 nfcv 2892 . . . . 5 𝑥𝑦
3331, 32nffv 6871 . . . 4 𝑥(𝐹𝑦)
3433nfeq1 2908 . . 3 𝑥(𝐹𝑦) = 𝐶
35 fveqeq2 6870 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) = 𝐶 ↔ (𝐹𝑦) = 𝐶))
3630, 34, 35cbvrexw 3283 . 2 (∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶 ↔ ∃𝑦 ∈ (𝐴𝐵)(𝐹𝑦) = 𝐶)
3729, 36sylibr 234 1 (𝜑 → ∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wnfc 2877  wrex 3054  Vcvv 3450  cin 3916   class class class wbr 5110  dom cdm 5641  cima 5644  Fun wfun 6508   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  cyc3evpm  33114  cycpmgcl  33117  cycpmconjslem2  33119  cyc3conja  33121  limsupmnflem  45725  liminfvalxr  45788
  Copyright terms: Public domain W3C validator