![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climresdm | Structured version Visualization version GIF version |
Description: A real function converges iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
Ref | Expression |
---|---|
climresdm.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climresdm.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
Ref | Expression |
---|---|
climresdm | ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resexg 5784 | . . . 4 ⊢ (𝐹 ∈ dom ⇝ → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ V) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ V) |
3 | fvexd 6558 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) ∈ V) | |
4 | climdm 14750 | . . . . . 6 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
5 | 4 | biimpi 217 | . . . . 5 ⊢ (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
6 | 5 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
7 | climresdm.1 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
8 | 7 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ) |
9 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) | |
10 | 8, 9 | climresd 41698 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ((𝐹 ↾ (ℤ≥‘𝑀)) ⇝ ( ⇝ ‘𝐹) ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))) |
11 | 6, 10 | mpbird 258 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐹 ↾ (ℤ≥‘𝑀)) ⇝ ( ⇝ ‘𝐹)) |
12 | 2, 3, 11 | breldmd 5672 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ ) |
13 | climresdm.2 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
14 | 13 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ ) → 𝐹 ∈ 𝑉) |
15 | fvexd 6558 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ ) → ( ⇝ ‘(𝐹 ↾ (ℤ≥‘𝑀))) ∈ V) | |
16 | climdm 14750 | . . . . . 6 ⊢ ((𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ⇝ ( ⇝ ‘(𝐹 ↾ (ℤ≥‘𝑀)))) | |
17 | 16 | biimpi 217 | . . . . 5 ⊢ ((𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ → (𝐹 ↾ (ℤ≥‘𝑀)) ⇝ ( ⇝ ‘(𝐹 ↾ (ℤ≥‘𝑀)))) |
18 | 17 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ ) → (𝐹 ↾ (ℤ≥‘𝑀)) ⇝ ( ⇝ ‘(𝐹 ↾ (ℤ≥‘𝑀)))) |
19 | 7 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ ) → 𝑀 ∈ ℤ) |
20 | 19, 14 | climresd 41698 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ ) → ((𝐹 ↾ (ℤ≥‘𝑀)) ⇝ ( ⇝ ‘(𝐹 ↾ (ℤ≥‘𝑀))) ↔ 𝐹 ⇝ ( ⇝ ‘(𝐹 ↾ (ℤ≥‘𝑀))))) |
21 | 18, 20 | mpbid 233 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘(𝐹 ↾ (ℤ≥‘𝑀)))) |
22 | 14, 15, 21 | breldmd 5672 | . 2 ⊢ ((𝜑 ∧ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
23 | 12, 22 | impbida 797 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ (𝐹 ↾ (ℤ≥‘𝑀)) ∈ dom ⇝ )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∈ wcel 2081 Vcvv 3437 class class class wbr 4966 dom cdm 5448 ↾ cres 5450 ‘cfv 6230 ℤcz 11834 ℤ≥cuz 12098 ⇝ cli 14680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 ax-pre-sup 10466 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-2nd 7551 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-sup 8757 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-div 11151 df-nn 11492 df-2 11553 df-3 11554 df-n0 11751 df-z 11835 df-uz 12099 df-rp 12245 df-seq 13225 df-exp 13285 df-cj 14297 df-re 14298 df-im 14299 df-sqrt 14433 df-abs 14434 df-clim 14684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |