Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breldmg | Structured version Visualization version GIF version |
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
breldmg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5078 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
2 | 1 | spcegv 3536 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 → ∃𝑥 𝐴𝑅𝑥)) |
3 | 2 | imp 407 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥) |
4 | eldmg 5807 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
5 | 3, 4 | syl5ibr 245 | . 2 ⊢ (𝐴 ∈ 𝐶 → ((𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)) |
6 | 5 | 3impib 1115 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∃wex 1782 ∈ wcel 2106 class class class wbr 5074 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-dm 5599 |
This theorem is referenced by: breldmd 5821 brelrng 5850 releldm 5853 sossfld 6089 brtpos 8051 fprresex 8126 wfrlem17OLD 8156 tfrlem9a 8217 perpln1 27071 lmdvg 31903 esumcvgsum 32056 climeldmeq 43206 climfv 43232 climxlim2 43387 sge0isum 43965 smflimsuplem6 44358 eubrdm 44530 funressneu 44541 tz6.12-afv 44665 rlimdmafv 44669 tz6.12-afv2 44732 rlimdmafv2 44750 |
Copyright terms: Public domain | W3C validator |