![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breldmg | Structured version Visualization version GIF version |
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
breldmg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
2 | 1 | spcegv 3610 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 → ∃𝑥 𝐴𝑅𝑥)) |
3 | 2 | imp 406 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥) |
4 | eldmg 5923 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
5 | 3, 4 | imbitrrid 246 | . 2 ⊢ (𝐴 ∈ 𝐶 → ((𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)) |
6 | 5 | 3impib 1116 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∃wex 1777 ∈ wcel 2108 class class class wbr 5166 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-dm 5710 |
This theorem is referenced by: breldmd 5937 brelrng 5966 releldm 5969 sossfld 6217 brtpos 8276 fprresex 8351 wfrlem17OLD 8381 tfrlem9a 8442 perpln1 28736 lmdvg 33899 esumcvgsum 34052 climeldmeq 45586 climfv 45612 climxlim2 45767 sge0isum 46348 smflimsuplem6 46746 eubrdm 46951 funressneu 46962 tz6.12-afv 47088 rlimdmafv 47092 tz6.12-afv2 47155 rlimdmafv2 47173 |
Copyright terms: Public domain | W3C validator |