| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breldmg | Structured version Visualization version GIF version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| breldmg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5093 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 2 | 1 | spcegv 3547 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 → ∃𝑥 𝐴𝑅𝑥)) |
| 3 | 2 | imp 406 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥) |
| 4 | eldmg 5837 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 5 | 3, 4 | imbitrrid 246 | . 2 ⊢ (𝐴 ∈ 𝐶 → ((𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)) |
| 6 | 5 | 3impib 1116 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1780 ∈ wcel 2111 class class class wbr 5089 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-dm 5624 |
| This theorem is referenced by: breldmd 5851 brelrng 5880 releldm 5883 sossfld 6133 brtpos 8165 fprresex 8240 tfrlem9a 8305 perpln1 28688 lmdvg 33966 esumcvgsum 34101 climeldmeq 45762 climfv 45788 climxlim2 45943 sge0isum 46524 smflimsuplem6 46922 eubrdm 47135 funressneu 47146 tz6.12-afv 47272 rlimdmafv 47276 tz6.12-afv2 47339 rlimdmafv2 47357 |
| Copyright terms: Public domain | W3C validator |