| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breldmg | Structured version Visualization version GIF version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| breldmg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5096 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 2 | 1 | spcegv 3552 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 → ∃𝑥 𝐴𝑅𝑥)) |
| 3 | 2 | imp 406 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥) |
| 4 | eldmg 5841 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 5 | 3, 4 | imbitrrid 246 | . 2 ⊢ (𝐴 ∈ 𝐶 → ((𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)) |
| 6 | 5 | 3impib 1116 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 class class class wbr 5092 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-dm 5629 |
| This theorem is referenced by: breldmd 5855 brelrng 5883 releldm 5886 sossfld 6135 brtpos 8168 fprresex 8243 tfrlem9a 8308 perpln1 28659 lmdvg 33936 esumcvgsum 34071 climeldmeq 45666 climfv 45692 climxlim2 45847 sge0isum 46428 smflimsuplem6 46826 eubrdm 47040 funressneu 47051 tz6.12-afv 47177 rlimdmafv 47181 tz6.12-afv2 47244 rlimdmafv2 47262 |
| Copyright terms: Public domain | W3C validator |