| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breldmg | Structured version Visualization version GIF version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.) |
| Ref | Expression |
|---|---|
| breldmg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5106 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴𝑅𝑥 ↔ 𝐴𝑅𝐵)) | |
| 2 | 1 | spcegv 3560 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → (𝐴𝑅𝐵 → ∃𝑥 𝐴𝑅𝑥)) |
| 3 | 2 | imp 406 | . . 3 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥) |
| 4 | eldmg 5852 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) | |
| 5 | 3, 4 | imbitrrid 246 | . 2 ⊢ (𝐴 ∈ 𝐶 → ((𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)) |
| 6 | 5 | 3impib 1116 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∃wex 1779 ∈ wcel 2109 class class class wbr 5102 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-dm 5641 |
| This theorem is referenced by: breldmd 5866 brelrng 5894 releldm 5897 sossfld 6147 brtpos 8191 fprresex 8266 tfrlem9a 8331 perpln1 28690 lmdvg 33936 esumcvgsum 34071 climeldmeq 45656 climfv 45682 climxlim2 45837 sge0isum 46418 smflimsuplem6 46816 eubrdm 47030 funressneu 47041 tz6.12-afv 47167 rlimdmafv 47171 tz6.12-afv2 47234 rlimdmafv2 47252 |
| Copyright terms: Public domain | W3C validator |