MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breldmg Structured version   Visualization version   GIF version

Theorem breldmg 5873
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
breldmg ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)

Proof of Theorem breldmg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5111 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑅𝑥𝐴𝑅𝐵))
21spcegv 3563 . . . 4 (𝐵𝐷 → (𝐴𝑅𝐵 → ∃𝑥 𝐴𝑅𝑥))
32imp 406 . . 3 ((𝐵𝐷𝐴𝑅𝐵) → ∃𝑥 𝐴𝑅𝑥)
4 eldmg 5862 . . 3 (𝐴𝐶 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
53, 4imbitrrid 246 . 2 (𝐴𝐶 → ((𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅))
653impib 1116 1 ((𝐴𝐶𝐵𝐷𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1779  wcel 2109   class class class wbr 5107  dom cdm 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-dm 5648
This theorem is referenced by:  breldmd  5876  brelrng  5905  releldm  5908  sossfld  6159  brtpos  8214  fprresex  8289  tfrlem9a  8354  perpln1  28637  lmdvg  33943  esumcvgsum  34078  climeldmeq  45663  climfv  45689  climxlim2  45844  sge0isum  46425  smflimsuplem6  46823  eubrdm  47037  funressneu  47048  tz6.12-afv  47174  rlimdmafv  47178  tz6.12-afv2  47241  rlimdmafv2  47259
  Copyright terms: Public domain W3C validator