MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmiun Structured version   Visualization version   GIF version

Theorem dmiun 5893
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
Assertion
Ref Expression
dmiun dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵

Proof of Theorem dmiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3269 . . . 4 (∃𝑥𝐴𝑧𝑦, 𝑧⟩ ∈ 𝐵 ↔ ∃𝑧𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
2 vex 3463 . . . . . 6 𝑦 ∈ V
32eldm2 5881 . . . . 5 (𝑦 ∈ dom 𝐵 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐵)
43rexbii 3083 . . . 4 (∃𝑥𝐴 𝑦 ∈ dom 𝐵 ↔ ∃𝑥𝐴𝑧𝑦, 𝑧⟩ ∈ 𝐵)
5 eliun 4971 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
65exbii 1848 . . . 4 (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑧𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
71, 4, 63bitr4ri 304 . . 3 (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝐵)
82eldm2 5881 . . 3 (𝑦 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵)
9 eliun 4971 . . 3 (𝑦 𝑥𝐴 dom 𝐵 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝐵)
107, 8, 93bitr4i 303 . 2 (𝑦 ∈ dom 𝑥𝐴 𝐵𝑦 𝑥𝐴 dom 𝐵)
1110eqriv 2732 1 dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2108  wrex 3060  cop 4607   ciun 4967  dom cdm 5654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-iun 4969  df-br 5120  df-dm 5664
This theorem is referenced by:  dprd2d2  20025  dmdju  32571  gsumpart  32997  esum2d  34070  fmla  35349  iunrelexp0  43673
  Copyright terms: Public domain W3C validator