MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmiun Structured version   Visualization version   GIF version

Theorem dmiun 5926
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
Assertion
Ref Expression
dmiun dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵

Proof of Theorem dmiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3285 . . . 4 (∃𝑥𝐴𝑧𝑦, 𝑧⟩ ∈ 𝐵 ↔ ∃𝑧𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
2 vex 3481 . . . . . 6 𝑦 ∈ V
32eldm2 5914 . . . . 5 (𝑦 ∈ dom 𝐵 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐵)
43rexbii 3091 . . . 4 (∃𝑥𝐴 𝑦 ∈ dom 𝐵 ↔ ∃𝑥𝐴𝑧𝑦, 𝑧⟩ ∈ 𝐵)
5 eliun 4999 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
65exbii 1844 . . . 4 (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑧𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
71, 4, 63bitr4ri 304 . . 3 (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝐵)
82eldm2 5914 . . 3 (𝑦 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵)
9 eliun 4999 . . 3 (𝑦 𝑥𝐴 dom 𝐵 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝐵)
107, 8, 93bitr4i 303 . 2 (𝑦 ∈ dom 𝑥𝐴 𝐵𝑦 𝑥𝐴 dom 𝐵)
1110eqriv 2731 1 dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wex 1775  wcel 2105  wrex 3067  cop 4636   ciun 4995  dom cdm 5688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-11 2154  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-iun 4997  df-br 5148  df-dm 5698
This theorem is referenced by:  dprd2d2  20078  dmdju  32663  gsumpart  33042  esum2d  34073  fmla  35365  iunrelexp0  43691
  Copyright terms: Public domain W3C validator