MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmiun Structured version   Visualization version   GIF version

Theorem dmiun 5822
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
Assertion
Ref Expression
dmiun dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵

Proof of Theorem dmiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3233 . . . 4 (∃𝑥𝐴𝑧𝑦, 𝑧⟩ ∈ 𝐵 ↔ ∃𝑧𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
2 vex 3436 . . . . . 6 𝑦 ∈ V
32eldm2 5810 . . . . 5 (𝑦 ∈ dom 𝐵 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐵)
43rexbii 3181 . . . 4 (∃𝑥𝐴 𝑦 ∈ dom 𝐵 ↔ ∃𝑥𝐴𝑧𝑦, 𝑧⟩ ∈ 𝐵)
5 eliun 4928 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
65exbii 1850 . . . 4 (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑧𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
71, 4, 63bitr4ri 304 . . 3 (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝐵)
82eldm2 5810 . . 3 (𝑦 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵)
9 eliun 4928 . . 3 (𝑦 𝑥𝐴 dom 𝐵 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝐵)
107, 8, 93bitr4i 303 . 2 (𝑦 ∈ dom 𝑥𝐴 𝐵𝑦 𝑥𝐴 dom 𝐵)
1110eqriv 2735 1 dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wex 1782  wcel 2106  wrex 3065  cop 4567   ciun 4924  dom cdm 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-iun 4926  df-br 5075  df-dm 5599
This theorem is referenced by:  dprd2d2  19647  gsumpart  31315  esum2d  32061  fmla  33343  iunrelexp0  41310
  Copyright terms: Public domain W3C validator