MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmiun Structured version   Visualization version   GIF version

Theorem dmiun 5913
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
Assertion
Ref Expression
dmiun dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵

Proof of Theorem dmiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3285 . . . 4 (∃𝑥𝐴𝑧𝑦, 𝑧⟩ ∈ 𝐵 ↔ ∃𝑧𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
2 vex 3478 . . . . . 6 𝑦 ∈ V
32eldm2 5901 . . . . 5 (𝑦 ∈ dom 𝐵 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐵)
43rexbii 3094 . . . 4 (∃𝑥𝐴 𝑦 ∈ dom 𝐵 ↔ ∃𝑥𝐴𝑧𝑦, 𝑧⟩ ∈ 𝐵)
5 eliun 5001 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
65exbii 1850 . . . 4 (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑧𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
71, 4, 63bitr4ri 303 . . 3 (∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝐵)
82eldm2 5901 . . 3 (𝑦 ∈ dom 𝑥𝐴 𝐵 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵)
9 eliun 5001 . . 3 (𝑦 𝑥𝐴 dom 𝐵 ↔ ∃𝑥𝐴 𝑦 ∈ dom 𝐵)
107, 8, 93bitr4i 302 . 2 (𝑦 ∈ dom 𝑥𝐴 𝐵𝑦 𝑥𝐴 dom 𝐵)
1110eqriv 2729 1 dom 𝑥𝐴 𝐵 = 𝑥𝐴 dom 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1781  wcel 2106  wrex 3070  cop 4634   ciun 4997  dom cdm 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-iun 4999  df-br 5149  df-dm 5686
This theorem is referenced by:  dprd2d2  19913  gsumpart  32202  esum2d  33086  fmla  34367  iunrelexp0  42443
  Copyright terms: Public domain W3C validator