Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmiun | Structured version Visualization version GIF version |
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dmiun | ⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3233 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐵 ↔ ∃𝑧∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ 𝐵) | |
2 | vex 3436 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 2 | eldm2 5810 | . . . . 5 ⊢ (𝑦 ∈ dom 𝐵 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐵) |
4 | 3 | rexbii 3181 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐵) |
5 | eliun 4928 | . . . . 5 ⊢ (〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ 𝐵) | |
6 | 5 | exbii 1850 | . . . 4 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑧∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ 𝐵) |
7 | 1, 4, 6 | 3bitr4ri 304 | . . 3 ⊢ (∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵) |
8 | 2 | eldm2 5810 | . . 3 ⊢ (𝑦 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
9 | eliun 4928 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵) | |
10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝐵) |
11 | 10 | eqriv 2735 | 1 ⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 〈cop 4567 ∪ ciun 4924 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-iun 4926 df-br 5075 df-dm 5599 |
This theorem is referenced by: dprd2d2 19647 gsumpart 31315 esum2d 32061 fmla 33343 iunrelexp0 41310 |
Copyright terms: Public domain | W3C validator |