![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmiun | Structured version Visualization version GIF version |
Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dmiun | ⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3281 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝐵 ↔ ∃𝑧∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ 𝐵) | |
2 | vex 3474 | . . . . . 6 ⊢ 𝑦 ∈ V | |
3 | 2 | eldm2 5898 | . . . . 5 ⊢ (𝑦 ∈ dom 𝐵 ↔ ∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝐵) |
4 | 3 | rexbii 3090 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑧⟨𝑦, 𝑧⟩ ∈ 𝐵) |
5 | eliun 4995 | . . . . 5 ⊢ (⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ 𝐵) | |
6 | 5 | exbii 1843 | . . . 4 ⊢ (∃𝑧⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑧∃𝑥 ∈ 𝐴 ⟨𝑦, 𝑧⟩ ∈ 𝐵) |
7 | 1, 4, 6 | 3bitr4ri 304 | . . 3 ⊢ (∃𝑧⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵) |
8 | 2 | eldm2 5898 | . . 3 ⊢ (𝑦 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑧⟨𝑦, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
9 | eliun 4995 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ dom 𝐵) | |
10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 dom 𝐵) |
11 | 10 | eqriv 2725 | 1 ⊢ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 dom 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∃wrex 3066 ⟨cop 4630 ∪ ciun 4991 dom cdm 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-11 2147 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-iun 4993 df-br 5143 df-dm 5682 |
This theorem is referenced by: dprd2d2 19994 gsumpart 32763 esum2d 33706 fmla 34985 iunrelexp0 43126 |
Copyright terms: Public domain | W3C validator |