Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brprop | Structured version Visualization version GIF version |
Description: Binary relation for a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
brprop.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
brprop.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
brprop.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
brprop.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
Ref | Expression |
---|---|
brprop | ⊢ (𝜑 → (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4561 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) | |
2 | 1 | breqi 5076 | . . 3 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}𝑌 ↔ 𝑋({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉})𝑌) |
3 | brun 5121 | . . 3 ⊢ (𝑋({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉})𝑌 ↔ (𝑋{〈𝐴, 𝐵〉}𝑌 ∨ 𝑋{〈𝐶, 𝐷〉}𝑌)) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}𝑌 ↔ (𝑋{〈𝐴, 𝐵〉}𝑌 ∨ 𝑋{〈𝐶, 𝐷〉}𝑌)) |
5 | brprop.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | brprop.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
7 | brsnop 5430 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑋{〈𝐴, 𝐵〉}𝑌 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) | |
8 | 5, 6, 7 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑋{〈𝐴, 𝐵〉}𝑌 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) |
9 | brprop.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
10 | brprop.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
11 | brsnop 5430 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (𝑋{〈𝐶, 𝐷〉}𝑌 ↔ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷))) | |
12 | 9, 10, 11 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑋{〈𝐶, 𝐷〉}𝑌 ↔ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷))) |
13 | 8, 12 | orbi12d 915 | . 2 ⊢ (𝜑 → ((𝑋{〈𝐴, 𝐵〉}𝑌 ∨ 𝑋{〈𝐶, 𝐷〉}𝑌) ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) |
14 | 4, 13 | syl5bb 282 | 1 ⊢ (𝜑 → (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 {csn 4558 {cpr 4560 〈cop 4564 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |