![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brprop | Structured version Visualization version GIF version |
Description: Binary relation for a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
brprop.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
brprop.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
brprop.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
brprop.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
Ref | Expression |
---|---|
brprop | ⊢ (𝜑 → (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4631 | . . . 4 ⊢ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) | |
2 | 1 | breqi 5154 | . . 3 ⊢ (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ 𝑋({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})𝑌) |
3 | brun 5199 | . . 3 ⊢ (𝑋({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})𝑌 ↔ (𝑋{⟨𝐴, 𝐵⟩}𝑌 ∨ 𝑋{⟨𝐶, 𝐷⟩}𝑌)) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ (𝑋{⟨𝐴, 𝐵⟩}𝑌 ∨ 𝑋{⟨𝐶, 𝐷⟩}𝑌)) |
5 | brprop.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | brprop.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
7 | brsnop 5522 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) | |
8 | 5, 6, 7 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) |
9 | brprop.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
10 | brprop.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
11 | brsnop 5522 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (𝑋{⟨𝐶, 𝐷⟩}𝑌 ↔ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷))) | |
12 | 9, 10, 11 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑋{⟨𝐶, 𝐷⟩}𝑌 ↔ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷))) |
13 | 8, 12 | orbi12d 916 | . 2 ⊢ (𝜑 → ((𝑋{⟨𝐴, 𝐵⟩}𝑌 ∨ 𝑋{⟨𝐶, 𝐷⟩}𝑌) ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) |
14 | 4, 13 | bitrid 283 | 1 ⊢ (𝜑 → (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∪ cun 3946 {csn 4628 {cpr 4630 ⟨cop 4634 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |