Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brprop Structured version   Visualization version   GIF version

Theorem brprop 32674
Description: Binary relation for a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
brprop.a (𝜑𝐴𝑉)
brprop.b (𝜑𝐵𝑊)
brprop.c (𝜑𝐶𝑉)
brprop.d (𝜑𝐷𝑊)
Assertion
Ref Expression
brprop (𝜑 → (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷))))

Proof of Theorem brprop
StepHypRef Expression
1 df-pr 4604 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
21breqi 5125 . . 3 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌𝑋({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})𝑌)
3 brun 5170 . . 3 (𝑋({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})𝑌 ↔ (𝑋{⟨𝐴, 𝐵⟩}𝑌𝑋{⟨𝐶, 𝐷⟩}𝑌))
42, 3bitri 275 . 2 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ (𝑋{⟨𝐴, 𝐵⟩}𝑌𝑋{⟨𝐶, 𝐷⟩}𝑌))
5 brprop.a . . . 4 (𝜑𝐴𝑉)
6 brprop.b . . . 4 (𝜑𝐵𝑊)
7 brsnop 5497 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
85, 6, 7syl2anc 584 . . 3 (𝜑 → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
9 brprop.c . . . 4 (𝜑𝐶𝑉)
10 brprop.d . . . 4 (𝜑𝐷𝑊)
11 brsnop 5497 . . . 4 ((𝐶𝑉𝐷𝑊) → (𝑋{⟨𝐶, 𝐷⟩}𝑌 ↔ (𝑋 = 𝐶𝑌 = 𝐷)))
129, 10, 11syl2anc 584 . . 3 (𝜑 → (𝑋{⟨𝐶, 𝐷⟩}𝑌 ↔ (𝑋 = 𝐶𝑌 = 𝐷)))
138, 12orbi12d 918 . 2 (𝜑 → ((𝑋{⟨𝐴, 𝐵⟩}𝑌𝑋{⟨𝐶, 𝐷⟩}𝑌) ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷))))
144, 13bitrid 283 1 (𝜑 → (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  cun 3924  {csn 4601  {cpr 4603  cop 4607   class class class wbr 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator