Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brprop Structured version   Visualization version   GIF version

Theorem brprop 32352
Description: Binary relation for a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
brprop.a (𝜑𝐴𝑉)
brprop.b (𝜑𝐵𝑊)
brprop.c (𝜑𝐶𝑉)
brprop.d (𝜑𝐷𝑊)
Assertion
Ref Expression
brprop (𝜑 → (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷))))

Proof of Theorem brprop
StepHypRef Expression
1 df-pr 4631 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
21breqi 5154 . . 3 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌𝑋({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})𝑌)
3 brun 5199 . . 3 (𝑋({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})𝑌 ↔ (𝑋{⟨𝐴, 𝐵⟩}𝑌𝑋{⟨𝐶, 𝐷⟩}𝑌))
42, 3bitri 275 . 2 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ (𝑋{⟨𝐴, 𝐵⟩}𝑌𝑋{⟨𝐶, 𝐷⟩}𝑌))
5 brprop.a . . . 4 (𝜑𝐴𝑉)
6 brprop.b . . . 4 (𝜑𝐵𝑊)
7 brsnop 5522 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
85, 6, 7syl2anc 583 . . 3 (𝜑 → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
9 brprop.c . . . 4 (𝜑𝐶𝑉)
10 brprop.d . . . 4 (𝜑𝐷𝑊)
11 brsnop 5522 . . . 4 ((𝐶𝑉𝐷𝑊) → (𝑋{⟨𝐶, 𝐷⟩}𝑌 ↔ (𝑋 = 𝐶𝑌 = 𝐷)))
129, 10, 11syl2anc 583 . . 3 (𝜑 → (𝑋{⟨𝐶, 𝐷⟩}𝑌 ↔ (𝑋 = 𝐶𝑌 = 𝐷)))
138, 12orbi12d 916 . 2 (𝜑 → ((𝑋{⟨𝐴, 𝐵⟩}𝑌𝑋{⟨𝐶, 𝐷⟩}𝑌) ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷))))
144, 13bitrid 283 1 (𝜑 → (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  cun 3946  {csn 4628  {cpr 4630  cop 4634   class class class wbr 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator