| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brprop | Structured version Visualization version GIF version | ||
| Description: Binary relation for a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| brprop.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| brprop.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| brprop.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| brprop.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| brprop | ⊢ (𝜑 → (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 4629 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) | |
| 2 | 1 | breqi 5149 | . . 3 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}𝑌 ↔ 𝑋({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉})𝑌) |
| 3 | brun 5194 | . . 3 ⊢ (𝑋({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉})𝑌 ↔ (𝑋{〈𝐴, 𝐵〉}𝑌 ∨ 𝑋{〈𝐶, 𝐷〉}𝑌)) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}𝑌 ↔ (𝑋{〈𝐴, 𝐵〉}𝑌 ∨ 𝑋{〈𝐶, 𝐷〉}𝑌)) |
| 5 | brprop.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | brprop.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | brsnop 5527 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑋{〈𝐴, 𝐵〉}𝑌 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋{〈𝐴, 𝐵〉}𝑌 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) |
| 9 | brprop.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 10 | brprop.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 11 | brsnop 5527 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (𝑋{〈𝐶, 𝐷〉}𝑌 ↔ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷))) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋{〈𝐶, 𝐷〉}𝑌 ↔ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷))) |
| 13 | 8, 12 | orbi12d 919 | . 2 ⊢ (𝜑 → ((𝑋{〈𝐴, 𝐵〉}𝑌 ∨ 𝑋{〈𝐶, 𝐷〉}𝑌) ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) |
| 14 | 4, 13 | bitrid 283 | 1 ⊢ (𝜑 → (𝑋{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}𝑌 ↔ ((𝑋 = 𝐴 ∧ 𝑌 = 𝐵) ∨ (𝑋 = 𝐶 ∧ 𝑌 = 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 {csn 4626 {cpr 4628 〈cop 4632 class class class wbr 5143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |