MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsnop Structured version   Visualization version   GIF version

Theorem brsnop 5527
Description: Binary relation for an ordered pair singleton. (Contributed by Thierry Arnoux, 23-Sep-2023.)
Assertion
Ref Expression
brsnop ((𝐴𝑉𝐵𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))

Proof of Theorem brsnop
StepHypRef Expression
1 df-br 5144 . 2 (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩})
2 opex 5469 . . . 4 𝑋, 𝑌⟩ ∈ V
32elsn 4641 . . 3 (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩)
4 opthg2 5484 . . 3 ((𝐴𝑉𝐵𝑊) → (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
53, 4bitrid 283 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
61, 5bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {csn 4626  cop 4632   class class class wbr 5143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144
This theorem is referenced by:  brprop  32706  0funcg  48918  0funcALT  48921  functermc2  49141
  Copyright terms: Public domain W3C validator