MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsnop Structured version   Visualization version   GIF version

Theorem brsnop 5522
Description: Binary relation for an ordered pair singleton. (Contributed by Thierry Arnoux, 23-Sep-2023.)
Assertion
Ref Expression
brsnop ((𝐴𝑉𝐵𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))

Proof of Theorem brsnop
StepHypRef Expression
1 df-br 5149 . 2 (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩})
2 opex 5464 . . . 4 𝑋, 𝑌⟩ ∈ V
32elsn 4643 . . 3 (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩)
4 opthg2 5479 . . 3 ((𝐴𝑉𝐵𝑊) → (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
53, 4bitrid 283 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
61, 5bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  {csn 4628  cop 4634   class class class wbr 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149
This theorem is referenced by:  brprop  32353
  Copyright terms: Public domain W3C validator