| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brsnop | Structured version Visualization version GIF version | ||
| Description: Binary relation for an ordered pair singleton. (Contributed by Thierry Arnoux, 23-Sep-2023.) |
| Ref | Expression |
|---|---|
| brsnop | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑋{〈𝐴, 𝐵〉}𝑌 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5125 | . 2 ⊢ (𝑋{〈𝐴, 𝐵〉}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉}) | |
| 2 | opex 5444 | . . . 4 ⊢ 〈𝑋, 𝑌〉 ∈ V | |
| 3 | 2 | elsn 4621 | . . 3 ⊢ (〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉) |
| 4 | opthg2 5459 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝑋, 𝑌〉 = 〈𝐴, 𝐵〉 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) | |
| 5 | 3, 4 | bitrid 283 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝑋, 𝑌〉 ∈ {〈𝐴, 𝐵〉} ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) |
| 6 | 1, 5 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑋{〈𝐴, 𝐵〉}𝑌 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4606 〈cop 4612 class class class wbr 5124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: brprop 32679 0funcg 49017 0funcALT 49020 functermc2 49361 |
| Copyright terms: Public domain | W3C validator |