MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsnop Structured version   Visualization version   GIF version

Theorem brsnop 5532
Description: Binary relation for an ordered pair singleton. (Contributed by Thierry Arnoux, 23-Sep-2023.)
Assertion
Ref Expression
brsnop ((𝐴𝑉𝐵𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))

Proof of Theorem brsnop
StepHypRef Expression
1 df-br 5149 . 2 (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩})
2 opex 5475 . . . 4 𝑋, 𝑌⟩ ∈ V
32elsn 4646 . . 3 (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩)
4 opthg2 5490 . . 3 ((𝐴𝑉𝐵𝑊) → (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
53, 4bitrid 283 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
61, 5bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {csn 4631  cop 4637   class class class wbr 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149
This theorem is referenced by:  brprop  32712
  Copyright terms: Public domain W3C validator