MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brsnop Structured version   Visualization version   GIF version

Theorem brsnop 5502
Description: Binary relation for an ordered pair singleton. (Contributed by Thierry Arnoux, 23-Sep-2023.)
Assertion
Ref Expression
brsnop ((𝐴𝑉𝐵𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))

Proof of Theorem brsnop
StepHypRef Expression
1 df-br 5125 . 2 (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩})
2 opex 5444 . . . 4 𝑋, 𝑌⟩ ∈ V
32elsn 4621 . . 3 (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩)
4 opthg2 5459 . . 3 ((𝐴𝑉𝐵𝑊) → (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
53, 4bitrid 283 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
61, 5bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4606  cop 4612   class class class wbr 5124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125
This theorem is referenced by:  brprop  32679  0funcg  49017  0funcALT  49020  functermc2  49361
  Copyright terms: Public domain W3C validator