![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brsnop | Structured version Visualization version GIF version |
Description: Binary relation for an ordered pair singleton. (Contributed by Thierry Arnoux, 23-Sep-2023.) |
Ref | Expression |
---|---|
brsnop | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5149 | . 2 ⊢ (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩}) | |
2 | opex 5464 | . . . 4 ⊢ ⟨𝑋, 𝑌⟩ ∈ V | |
3 | 2 | elsn 4643 | . . 3 ⊢ (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩) |
4 | opthg2 5479 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) | |
5 | 3, 4 | bitrid 283 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) |
6 | 1, 5 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴 ∧ 𝑌 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {csn 4628 ⟨cop 4634 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 |
This theorem is referenced by: brprop 32353 |
Copyright terms: Public domain | W3C validator |