Proof of Theorem mptprop
Step | Hyp | Ref
| Expression |
1 | | df-pr 4564 |
. 2
⊢
{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) |
2 | | brprop.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
3 | | brprop.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
4 | | fmptsn 7039 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) |
5 | 2, 3, 4 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) |
6 | | incom 4135 |
. . . . . . . 8
⊢ ({𝐴} ∩ {𝐴, 𝐶}) = ({𝐴, 𝐶} ∩ {𝐴}) |
7 | | prid1g 4696 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐶}) |
8 | | snssi 4741 |
. . . . . . . . . 10
⊢ (𝐴 ∈ {𝐴, 𝐶} → {𝐴} ⊆ {𝐴, 𝐶}) |
9 | 2, 7, 8 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → {𝐴} ⊆ {𝐴, 𝐶}) |
10 | | df-ss 3904 |
. . . . . . . . 9
⊢ ({𝐴} ⊆ {𝐴, 𝐶} ↔ ({𝐴} ∩ {𝐴, 𝐶}) = {𝐴}) |
11 | 9, 10 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → ({𝐴} ∩ {𝐴, 𝐶}) = {𝐴}) |
12 | 6, 11 | eqtr3id 2792 |
. . . . . . 7
⊢ (𝜑 → ({𝐴, 𝐶} ∩ {𝐴}) = {𝐴}) |
13 | 12 | mpteq1d 5169 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ({𝐴, 𝐶} ∩ {𝐴}) ↦ 𝐵) = (𝑥 ∈ {𝐴} ↦ 𝐵)) |
14 | 5, 13 | eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → {〈𝐴, 𝐵〉} = (𝑥 ∈ ({𝐴, 𝐶} ∩ {𝐴}) ↦ 𝐵)) |
15 | | brprop.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
16 | | brprop.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ 𝑊) |
17 | | fmptsn 7039 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → {〈𝐶, 𝐷〉} = (𝑥 ∈ {𝐶} ↦ 𝐷)) |
18 | 15, 16, 17 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → {〈𝐶, 𝐷〉} = (𝑥 ∈ {𝐶} ↦ 𝐷)) |
19 | | mptprop.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ≠ 𝐶) |
20 | | difprsn1 4733 |
. . . . . . . 8
⊢ (𝐴 ≠ 𝐶 → ({𝐴, 𝐶} ∖ {𝐴}) = {𝐶}) |
21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ({𝐴, 𝐶} ∖ {𝐴}) = {𝐶}) |
22 | 21 | mpteq1d 5169 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ({𝐴, 𝐶} ∖ {𝐴}) ↦ 𝐷) = (𝑥 ∈ {𝐶} ↦ 𝐷)) |
23 | 18, 22 | eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → {〈𝐶, 𝐷〉} = (𝑥 ∈ ({𝐴, 𝐶} ∖ {𝐴}) ↦ 𝐷)) |
24 | 14, 23 | uneq12d 4098 |
. . . 4
⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) = ((𝑥 ∈ ({𝐴, 𝐶} ∩ {𝐴}) ↦ 𝐵) ∪ (𝑥 ∈ ({𝐴, 𝐶} ∖ {𝐴}) ↦ 𝐷))) |
25 | | partfun 6580 |
. . . 4
⊢ (𝑥 ∈ {𝐴, 𝐶} ↦ if(𝑥 ∈ {𝐴}, 𝐵, 𝐷)) = ((𝑥 ∈ ({𝐴, 𝐶} ∩ {𝐴}) ↦ 𝐵) ∪ (𝑥 ∈ ({𝐴, 𝐶} ∖ {𝐴}) ↦ 𝐷)) |
26 | 24, 25 | eqtr4di 2796 |
. . 3
⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) = (𝑥 ∈ {𝐴, 𝐶} ↦ if(𝑥 ∈ {𝐴}, 𝐵, 𝐷))) |
27 | | elsn2g 4599 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)) |
28 | 2, 27 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)) |
29 | 28 | ifbid 4482 |
. . . 4
⊢ (𝜑 → if(𝑥 ∈ {𝐴}, 𝐵, 𝐷) = if(𝑥 = 𝐴, 𝐵, 𝐷)) |
30 | 29 | mpteq2dv 5176 |
. . 3
⊢ (𝜑 → (𝑥 ∈ {𝐴, 𝐶} ↦ if(𝑥 ∈ {𝐴}, 𝐵, 𝐷)) = (𝑥 ∈ {𝐴, 𝐶} ↦ if(𝑥 = 𝐴, 𝐵, 𝐷))) |
31 | 26, 30 | eqtrd 2778 |
. 2
⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) = (𝑥 ∈ {𝐴, 𝐶} ↦ if(𝑥 = 𝐴, 𝐵, 𝐷))) |
32 | 1, 31 | eqtrid 2790 |
1
⊢ (𝜑 → {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐶} ↦ if(𝑥 = 𝐴, 𝐵, 𝐷))) |