Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvprop Structured version   Visualization version   GIF version

Theorem cnvprop 31008
Description: Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Assertion
Ref Expression
cnvprop (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩})

Proof of Theorem cnvprop
StepHypRef Expression
1 cnvsng 6123 . . . 4 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
21adantr 480 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
3 cnvsng 6123 . . . 4 ((𝐶𝑉𝐷𝑊) → {⟨𝐶, 𝐷⟩} = {⟨𝐷, 𝐶⟩})
43adantl 481 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐶, 𝐷⟩} = {⟨𝐷, 𝐶⟩})
52, 4uneq12d 4102 . 2 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐷, 𝐶⟩}))
6 df-pr 4569 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
76cnveqi 5780 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
8 cnvun 6043 . . 3 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
97, 8eqtri 2767 . 2 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
10 df-pr 4569 . 2 {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩} = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐷, 𝐶⟩})
115, 9, 103eqtr4g 2804 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cun 3889  {csn 4566  {cpr 4568  cop 4572  ccnv 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596
This theorem is referenced by:  cycpm2tr  31365
  Copyright terms: Public domain W3C validator