![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvprop | Structured version Visualization version GIF version |
Description: Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
cnvprop | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsng 6223 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}) | |
2 | 1 | adantr 482 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}) |
3 | cnvsng 6223 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → ◡{⟨𝐶, 𝐷⟩} = {⟨𝐷, 𝐶⟩}) | |
4 | 3 | adantl 483 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{⟨𝐶, 𝐷⟩} = {⟨𝐷, 𝐶⟩}) |
5 | 2, 4 | uneq12d 4165 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (◡{⟨𝐴, 𝐵⟩} ∪ ◡{⟨𝐶, 𝐷⟩}) = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐷, 𝐶⟩})) |
6 | df-pr 4632 | . . . 4 ⊢ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) | |
7 | 6 | cnveqi 5875 | . . 3 ⊢ ◡{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ◡({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) |
8 | cnvun 6143 | . . 3 ⊢ ◡({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = (◡{⟨𝐴, 𝐵⟩} ∪ ◡{⟨𝐶, 𝐷⟩}) | |
9 | 7, 8 | eqtri 2761 | . 2 ⊢ ◡{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = (◡{⟨𝐴, 𝐵⟩} ∪ ◡{⟨𝐶, 𝐷⟩}) |
10 | df-pr 4632 | . 2 ⊢ {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩} = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐷, 𝐶⟩}) | |
11 | 5, 9, 10 | 3eqtr4g 2798 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∪ cun 3947 {csn 4629 {cpr 4631 ⟨cop 4635 ◡ccnv 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 |
This theorem is referenced by: cycpm2tr 32278 |
Copyright terms: Public domain | W3C validator |