Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvprop | Structured version Visualization version GIF version |
Description: Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
cnvprop | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {〈𝐵, 𝐴〉, 〈𝐷, 𝐶〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsng 6123 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | |
2 | 1 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) |
3 | cnvsng 6123 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → ◡{〈𝐶, 𝐷〉} = {〈𝐷, 𝐶〉}) | |
4 | 3 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{〈𝐶, 𝐷〉} = {〈𝐷, 𝐶〉}) |
5 | 2, 4 | uneq12d 4102 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (◡{〈𝐴, 𝐵〉} ∪ ◡{〈𝐶, 𝐷〉}) = ({〈𝐵, 𝐴〉} ∪ {〈𝐷, 𝐶〉})) |
6 | df-pr 4569 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) | |
7 | 6 | cnveqi 5780 | . . 3 ⊢ ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ◡({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) |
8 | cnvun 6043 | . . 3 ⊢ ◡({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) = (◡{〈𝐴, 𝐵〉} ∪ ◡{〈𝐶, 𝐷〉}) | |
9 | 7, 8 | eqtri 2767 | . 2 ⊢ ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = (◡{〈𝐴, 𝐵〉} ∪ ◡{〈𝐶, 𝐷〉}) |
10 | df-pr 4569 | . 2 ⊢ {〈𝐵, 𝐴〉, 〈𝐷, 𝐶〉} = ({〈𝐵, 𝐴〉} ∪ {〈𝐷, 𝐶〉}) | |
11 | 5, 9, 10 | 3eqtr4g 2804 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {〈𝐵, 𝐴〉, 〈𝐷, 𝐶〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∪ cun 3889 {csn 4566 {cpr 4568 〈cop 4572 ◡ccnv 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 |
This theorem is referenced by: cycpm2tr 31365 |
Copyright terms: Public domain | W3C validator |