Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvprop Structured version   Visualization version   GIF version

Theorem cnvprop 32708
Description: Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Assertion
Ref Expression
cnvprop (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩})

Proof of Theorem cnvprop
StepHypRef Expression
1 cnvsng 6254 . . . 4 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
21adantr 480 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
3 cnvsng 6254 . . . 4 ((𝐶𝑉𝐷𝑊) → {⟨𝐶, 𝐷⟩} = {⟨𝐷, 𝐶⟩})
43adantl 481 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐶, 𝐷⟩} = {⟨𝐷, 𝐶⟩})
52, 4uneq12d 4192 . 2 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐷, 𝐶⟩}))
6 df-pr 4651 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
76cnveqi 5899 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
8 cnvun 6174 . . 3 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
97, 8eqtri 2768 . 2 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
10 df-pr 4651 . 2 {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩} = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐷, 𝐶⟩})
115, 9, 103eqtr4g 2805 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cun 3974  {csn 4648  {cpr 4650  cop 4654  ccnv 5699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by:  cycpm2tr  33112
  Copyright terms: Public domain W3C validator