![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvprop | Structured version Visualization version GIF version |
Description: Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
cnvprop | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {〈𝐵, 𝐴〉, 〈𝐷, 𝐶〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsng 6254 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | |
2 | 1 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) |
3 | cnvsng 6254 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → ◡{〈𝐶, 𝐷〉} = {〈𝐷, 𝐶〉}) | |
4 | 3 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{〈𝐶, 𝐷〉} = {〈𝐷, 𝐶〉}) |
5 | 2, 4 | uneq12d 4192 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (◡{〈𝐴, 𝐵〉} ∪ ◡{〈𝐶, 𝐷〉}) = ({〈𝐵, 𝐴〉} ∪ {〈𝐷, 𝐶〉})) |
6 | df-pr 4651 | . . . 4 ⊢ {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) | |
7 | 6 | cnveqi 5899 | . . 3 ⊢ ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = ◡({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) |
8 | cnvun 6174 | . . 3 ⊢ ◡({〈𝐴, 𝐵〉} ∪ {〈𝐶, 𝐷〉}) = (◡{〈𝐴, 𝐵〉} ∪ ◡{〈𝐶, 𝐷〉}) | |
9 | 7, 8 | eqtri 2768 | . 2 ⊢ ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = (◡{〈𝐴, 𝐵〉} ∪ ◡{〈𝐶, 𝐷〉}) |
10 | df-pr 4651 | . 2 ⊢ {〈𝐵, 𝐴〉, 〈𝐷, 𝐶〉} = ({〈𝐵, 𝐴〉} ∪ {〈𝐷, 𝐶〉}) | |
11 | 5, 9, 10 | 3eqtr4g 2805 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ◡{〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉} = {〈𝐵, 𝐴〉, 〈𝐷, 𝐶〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 {csn 4648 {cpr 4650 〈cop 4654 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: cycpm2tr 33112 |
Copyright terms: Public domain | W3C validator |