Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvprop Structured version   Visualization version   GIF version

Theorem cnvprop 32494
Description: Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Assertion
Ref Expression
cnvprop (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩})

Proof of Theorem cnvprop
StepHypRef Expression
1 cnvsng 6230 . . . 4 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
21adantr 479 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
3 cnvsng 6230 . . . 4 ((𝐶𝑉𝐷𝑊) → {⟨𝐶, 𝐷⟩} = {⟨𝐷, 𝐶⟩})
43adantl 480 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐶, 𝐷⟩} = {⟨𝐷, 𝐶⟩})
52, 4uneq12d 4163 . 2 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐷, 𝐶⟩}))
6 df-pr 4633 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
76cnveqi 5879 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
8 cnvun 6150 . . 3 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
97, 8eqtri 2755 . 2 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
10 df-pr 4633 . 2 {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩} = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐷, 𝐶⟩})
115, 9, 103eqtr4g 2792 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cun 3945  {csn 4630  {cpr 4632  cop 4636  ccnv 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5151  df-opab 5213  df-xp 5686  df-rel 5687  df-cnv 5688
This theorem is referenced by:  cycpm2tr  32858
  Copyright terms: Public domain W3C validator