Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvprop Structured version   Visualization version   GIF version

Theorem cnvprop 31918
Description: Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Assertion
Ref Expression
cnvprop (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩})

Proof of Theorem cnvprop
StepHypRef Expression
1 cnvsng 6223 . . . 4 ((𝐴𝑉𝐵𝑊) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
21adantr 482 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
3 cnvsng 6223 . . . 4 ((𝐶𝑉𝐷𝑊) → {⟨𝐶, 𝐷⟩} = {⟨𝐷, 𝐶⟩})
43adantl 483 . . 3 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐶, 𝐷⟩} = {⟨𝐷, 𝐶⟩})
52, 4uneq12d 4165 . 2 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐷, 𝐶⟩}))
6 df-pr 4632 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
76cnveqi 5875 . . 3 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
8 cnvun 6143 . . 3 ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩}) = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
97, 8eqtri 2761 . 2 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
10 df-pr 4632 . 2 {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩} = ({⟨𝐵, 𝐴⟩} ∪ {⟨𝐷, 𝐶⟩})
115, 9, 103eqtr4g 2798 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐶𝑉𝐷𝑊)) → {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {⟨𝐵, 𝐴⟩, ⟨𝐷, 𝐶⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cun 3947  {csn 4629  {cpr 4631  cop 4635  ccnv 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685
This theorem is referenced by:  cycpm2tr  32278
  Copyright terms: Public domain W3C validator