Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrabga Structured version   Visualization version   GIF version

Theorem brrabga 38299
Description: The law of concretion for operation class abstraction. (Contributed by Peter Mazsa, 24-Oct-2022.)
Hypotheses
Ref Expression
brrabga.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
brrabga.2 𝑅 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
Assertion
Ref Expression
brrabga ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵𝑅𝐶𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem brrabga
StepHypRef Expression
1 df-br 5167 . . 3 (⟨𝐴, 𝐵𝑅𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ 𝑅)
2 brrabga.2 . . . 4 𝑅 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
32eleq2i 2836 . . 3 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ 𝑅 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
41, 3bitri 275 . 2 (⟨𝐴, 𝐵𝑅𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
5 brrabga.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
65eloprabga 7560 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
74, 6bitrid 283 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐴, 𝐵𝑅𝐶𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  cop 4654   class class class wbr 5166  {coprab 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-oprab 7454
This theorem is referenced by:  brcnvrabga  38300
  Copyright terms: Public domain W3C validator