Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brrabga | Structured version Visualization version GIF version |
Description: The law of concretion for operation class abstraction. (Contributed by Peter Mazsa, 24-Oct-2022.) |
Ref | Expression |
---|---|
brrabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
brrabga.2 | ⊢ 𝑅 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brrabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵〉𝑅𝐶 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5071 | . . 3 ⊢ (〈𝐴, 𝐵〉𝑅𝐶 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ 𝑅) | |
2 | brrabga.2 | . . . 4 ⊢ 𝑅 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | |
3 | 2 | eleq2i 2830 | . . 3 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ 𝑅 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
4 | 1, 3 | bitri 274 | . 2 ⊢ (〈𝐴, 𝐵〉𝑅𝐶 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) |
5 | brrabga.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
6 | 5 | eloprabga 7360 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ 𝜓)) |
7 | 4, 6 | syl5bb 282 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵〉𝑅𝐶 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 {coprab 7256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-oprab 7259 |
This theorem is referenced by: brcnvrabga 36404 |
Copyright terms: Public domain | W3C validator |