Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqres Structured version   Visualization version   GIF version

Theorem eqres 38376
Description: Converting a class constant definition by restriction (like df-ers 38709 or df-parts 38811) into a binary relation. (Contributed by Peter Mazsa, 1-Oct-2018.)
Hypothesis
Ref Expression
eqres.1 𝑅 = (𝑆𝐶)
Assertion
Ref Expression
eqres (𝐵𝑉 → (𝐴𝑅𝐵 ↔ (𝐴𝐶𝐴𝑆𝐵)))

Proof of Theorem eqres
StepHypRef Expression
1 eqres.1 . . 3 𝑅 = (𝑆𝐶)
21breqi 5095 . 2 (𝐴𝑅𝐵𝐴(𝑆𝐶)𝐵)
3 brres 5934 . 2 (𝐵𝑉 → (𝐴(𝑆𝐶)𝐵 ↔ (𝐴𝐶𝐴𝑆𝐵)))
42, 3bitrid 283 1 (𝐵𝑉 → (𝐴𝑅𝐵 ↔ (𝐴𝐶𝐴𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-res 5626
This theorem is referenced by:  brers  38713  brparts  38817
  Copyright terms: Public domain W3C validator