| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqres | Structured version Visualization version GIF version | ||
| Description: Converting a class constant definition by restriction (like df-ers 38709 or df-parts 38811) into a binary relation. (Contributed by Peter Mazsa, 1-Oct-2018.) |
| Ref | Expression |
|---|---|
| eqres.1 | ⊢ 𝑅 = (𝑆 ↾ 𝐶) |
| Ref | Expression |
|---|---|
| eqres | ⊢ (𝐵 ∈ 𝑉 → (𝐴𝑅𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴𝑆𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqres.1 | . . 3 ⊢ 𝑅 = (𝑆 ↾ 𝐶) | |
| 2 | 1 | breqi 5095 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴(𝑆 ↾ 𝐶)𝐵) |
| 3 | brres 5934 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴(𝑆 ↾ 𝐶)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴𝑆𝐵))) | |
| 4 | 2, 3 | bitrid 283 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴𝑅𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴𝑆𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-res 5626 |
| This theorem is referenced by: brers 38713 brparts 38817 |
| Copyright terms: Public domain | W3C validator |