MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunopeqop Structured version   Visualization version   GIF version

Theorem iunopeqop 5521
Description: Implication of an ordered pair being equal to an indexed union of singletons of ordered pairs. (Contributed by AV, 20-Sep-2020.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
iunopeqop.b 𝐵 ∈ V
iunopeqop.c 𝐶 ∈ V
iunopeqop.d 𝐷 ∈ V
Assertion
Ref Expression
iunopeqop (𝐴 ≠ ∅ → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥,𝑧)   𝐶(𝑧)   𝐷(𝑧)

Proof of Theorem iunopeqop
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0snor2el 4834 . 2 (𝐴 ≠ ∅ → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}))
2 nfiu1 5031 . . . . . 6 𝑥 𝑥𝐴 {⟨𝑥, 𝐵⟩}
32nfeq1 2918 . . . . 5 𝑥 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷
4 nfv 1917 . . . . 5 𝑥𝑧 𝐴 = {𝑧}
53, 4nfim 1899 . . . 4 𝑥( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧})
6 ssiun2 5050 . . . . . . 7 (𝑥𝐴 → {⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩})
7 nfcv 2903 . . . . . . . 8 𝑥𝑦
8 nfcsb1v 3918 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐵
97, 8nfop 4889 . . . . . . . . . 10 𝑥𝑦, 𝑦 / 𝑥𝐵
109nfsn 4711 . . . . . . . . 9 𝑥{⟨𝑦, 𝑦 / 𝑥𝐵⟩}
1110, 2nfss 3974 . . . . . . . 8 𝑥{⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}
12 id 22 . . . . . . . . . . 11 (𝑥 = 𝑦𝑥 = 𝑦)
13 csbeq1a 3907 . . . . . . . . . . 11 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
1412, 13opeq12d 4881 . . . . . . . . . 10 (𝑥 = 𝑦 → ⟨𝑥, 𝐵⟩ = ⟨𝑦, 𝑦 / 𝑥𝐵⟩)
1514sneqd 4640 . . . . . . . . 9 (𝑥 = 𝑦 → {⟨𝑥, 𝐵⟩} = {⟨𝑦, 𝑦 / 𝑥𝐵⟩})
1615sseq1d 4013 . . . . . . . 8 (𝑥 = 𝑦 → ({⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ↔ {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}))
177, 11, 16, 6vtoclgaf 3564 . . . . . . 7 (𝑦𝐴 → {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩})
186, 17anim12i 613 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ({⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ∧ {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}))
19 unss 4184 . . . . . . 7 (({⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ∧ {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}) ↔ ({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩})
20 sseq2 4008 . . . . . . . . 9 ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ↔ ({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ ⟨𝐶, 𝐷⟩))
21 df-pr 4631 . . . . . . . . . . . 12 {⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩} = ({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩})
2221eqcomi 2741 . . . . . . . . . . 11 ({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) = {⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩}
2322sseq1i 4010 . . . . . . . . . 10 (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ ⟨𝐶, 𝐷⟩ ↔ {⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ ⟨𝐶, 𝐷⟩)
24 vex 3478 . . . . . . . . . . . 12 𝑥 ∈ V
25 iunopeqop.b . . . . . . . . . . . 12 𝐵 ∈ V
26 vex 3478 . . . . . . . . . . . 12 𝑦 ∈ V
2725csbex 5311 . . . . . . . . . . . 12 𝑦 / 𝑥𝐵 ∈ V
28 iunopeqop.c . . . . . . . . . . . 12 𝐶 ∈ V
29 iunopeqop.d . . . . . . . . . . . 12 𝐷 ∈ V
3024, 25, 26, 27, 28, 29propssopi 5508 . . . . . . . . . . 11 ({⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ ⟨𝐶, 𝐷⟩ → 𝑥 = 𝑦)
31 eqneqall 2951 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝑦 → ((𝑥𝐴𝑦𝐴) → ∃𝑧 𝐴 = {𝑧})))
3230, 31syl 17 . . . . . . . . . 10 ({⟨𝑥, 𝐵⟩, ⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ ⟨𝐶, 𝐷⟩ → (𝑥𝑦 → ((𝑥𝐴𝑦𝐴) → ∃𝑧 𝐴 = {𝑧})))
3323, 32sylbi 216 . . . . . . . . 9 (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ ⟨𝐶, 𝐷⟩ → (𝑥𝑦 → ((𝑥𝐴𝑦𝐴) → ∃𝑧 𝐴 = {𝑧})))
3420, 33syl6bi 252 . . . . . . . 8 ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} → (𝑥𝑦 → ((𝑥𝐴𝑦𝐴) → ∃𝑧 𝐴 = {𝑧}))))
3534com14 96 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → (({⟨𝑥, 𝐵⟩} ∪ {⟨𝑦, 𝑦 / 𝑥𝐵⟩}) ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} → (𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))))
3619, 35biimtrid 241 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (({⟨𝑥, 𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩} ∧ {⟨𝑦, 𝑦 / 𝑥𝐵⟩} ⊆ 𝑥𝐴 {⟨𝑥, 𝐵⟩}) → (𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))))
3718, 36mpd 15 . . . . 5 ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧})))
3837rexlimdva 3155 . . . 4 (𝑥𝐴 → (∃𝑦𝐴 𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧})))
395, 38rexlimi 3256 . . 3 (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
40 ax-1 6 . . 3 (∃𝑧 𝐴 = {𝑧} → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
4139, 40jaoi 855 . 2 ((∃𝑥𝐴𝑦𝐴 𝑥𝑦 ∨ ∃𝑧 𝐴 = {𝑧}) → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
421, 41syl 17 1 (𝐴 ≠ ∅ → ( 𝑥𝐴 {⟨𝑥, 𝐵⟩} = ⟨𝐶, 𝐷⟩ → ∃𝑧 𝐴 = {𝑧}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wex 1781  wcel 2106  wne 2940  wrex 3070  Vcvv 3474  csb 3893  cun 3946  wss 3948  c0 4322  {csn 4628  {cpr 4630  cop 4634   ciun 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-iun 4999
This theorem is referenced by:  funopsn  7145
  Copyright terms: Public domain W3C validator