Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtpid2 | Structured version Visualization version GIF version |
Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
Ref | Expression |
---|---|
brtpid2 | ⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5327 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | 1 | tpid2 4666 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {𝐶, 〈𝐴, 𝐵〉, 𝐷} |
3 | df-br 5036 | . 2 ⊢ (𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {𝐶, 〈𝐴, 𝐵〉, 𝐷}) | |
4 | 2, 3 | mpbir 234 | 1 ⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 {ctp 4529 〈cop 4531 class class class wbr 5035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-dif 3863 df-un 3865 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-br 5036 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |