Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtpid2 | Structured version Visualization version GIF version |
Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
Ref | Expression |
---|---|
brtpid2 | ⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5373 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | 1 | tpid2 4703 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {𝐶, 〈𝐴, 𝐵〉, 𝐷} |
3 | df-br 5071 | . 2 ⊢ (𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {𝐶, 〈𝐴, 𝐵〉, 𝐷}) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {ctp 4562 〈cop 4564 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-br 5071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |