| Mathbox for Scott Fenton | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brtpid2 | Structured version Visualization version GIF version | ||
| Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) | 
| Ref | Expression | 
|---|---|
| brtpid2 | ⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opex 5451 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 2 | 1 | tpid2 4752 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {𝐶, 〈𝐴, 𝐵〉, 𝐷} | 
| 3 | df-br 5126 | . 2 ⊢ (𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {𝐶, 〈𝐴, 𝐵〉, 𝐷}) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∈ wcel 2107 {ctp 4612 〈cop 4614 class class class wbr 5125 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-br 5126 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |