![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtpid2 | Structured version Visualization version GIF version |
Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
Ref | Expression |
---|---|
brtpid2 | ⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5476 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | 1 | tpid2 4776 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {𝐶, 〈𝐴, 𝐵〉, 𝐷} |
3 | df-br 5150 | . 2 ⊢ (𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {𝐶, 〈𝐴, 𝐵〉, 𝐷}) | |
4 | 2, 3 | mpbir 231 | 1 ⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 {ctp 4636 〈cop 4638 class class class wbr 5149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-br 5150 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |