![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brtpid2 | Structured version Visualization version GIF version |
Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
Ref | Expression |
---|---|
brtpid2 | ⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5463 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | 1 | tpid2 4773 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {𝐶, 〈𝐴, 𝐵〉, 𝐷} |
3 | df-br 5148 | . 2 ⊢ (𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {𝐶, 〈𝐴, 𝐵〉, 𝐷}) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {ctp 4631 〈cop 4633 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-br 5148 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |