Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtpid2 Structured version   Visualization version   GIF version

Theorem brtpid2 35659
Description: A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.)
Assertion
Ref Expression
brtpid2 𝐴{𝐶, ⟨𝐴, 𝐵⟩, 𝐷}𝐵

Proof of Theorem brtpid2
StepHypRef Expression
1 opex 5451 . . 3 𝐴, 𝐵⟩ ∈ V
21tpid2 4752 . 2 𝐴, 𝐵⟩ ∈ {𝐶, ⟨𝐴, 𝐵⟩, 𝐷}
3 df-br 5126 . 2 (𝐴{𝐶, ⟨𝐴, 𝐵⟩, 𝐷}𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {𝐶, ⟨𝐴, 𝐵⟩, 𝐷})
42, 3mpbir 231 1 𝐴{𝐶, ⟨𝐴, 𝐵⟩, 𝐷}𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  {ctp 4612  cop 4614   class class class wbr 5125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-br 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator