| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid3 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| tpid3.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| tpid3 | ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpid3.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | tpid3g 4726 | . 2 ⊢ (𝐶 ∈ V → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 {ctp 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4578 df-pr 4580 df-tp 4582 |
| This theorem is referenced by: hash3tpb 14406 wrdl3s3 14873 usgrwwlks2on 29940 umgrwwlks2on 29941 ex-pss 30412 sgncl 32821 s3rnOLD 32936 cyc3evpm 33128 sgnsf 33140 prodfzo03 34639 circlevma 34678 circlemethhgt 34679 hgt750lemg 34690 hgt750lemb 34692 hgt750lema 34693 hgt750leme 34694 tgoldbachgtde 34696 tgoldbachgt 34699 kur14lem7 35279 brtpid3 35790 rabren3dioph 42935 oenord1ex 43435 fourierdlem114 46345 usgrexmpl1tri 48152 usgrexmpl2nb0 48158 usgrexmpl2nb1 48159 usgrexmpl2nb2 48160 usgrexmpl2nb3 48161 usgrexmpl2nb4 48162 usgrexmpl2nb5 48163 gpg3kgrtriex 48216 |
| Copyright terms: Public domain | W3C validator |