| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid3 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| tpid3.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| tpid3 | ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpid3.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | tpid3g 4726 | . 2 ⊢ (𝐶 ∈ V → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 {ctp 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-sn 4580 df-pr 4582 df-tp 4584 |
| This theorem is referenced by: hash3tpb 14420 wrdl3s3 14887 umgrwwlks2on 29920 ex-pss 30390 sgncl 32789 s3rnOLD 32900 cyc3evpm 33105 sgnsf 33117 prodfzo03 34573 circlevma 34612 circlemethhgt 34613 hgt750lemg 34624 hgt750lemb 34626 hgt750lema 34627 hgt750leme 34628 tgoldbachgtde 34630 tgoldbachgt 34633 kur14lem7 35187 brtpid3 35698 rabren3dioph 42791 oenord1ex 43291 fourierdlem114 46205 usgrexmpl1tri 48013 usgrexmpl2nb0 48019 usgrexmpl2nb1 48020 usgrexmpl2nb2 48021 usgrexmpl2nb3 48022 usgrexmpl2nb4 48023 usgrexmpl2nb5 48024 gpg3kgrtriex 48077 |
| Copyright terms: Public domain | W3C validator |