| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid3 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 30-Apr-2021.) |
| Ref | Expression |
|---|---|
| tpid3.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| tpid3 | ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpid3.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | tpid3g 4748 | . 2 ⊢ (𝐶 ∈ V → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 {ctp 4605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-pr 4604 df-tp 4606 |
| This theorem is referenced by: hash3tpb 14513 wrdl3s3 14981 umgrwwlks2on 29939 ex-pss 30409 sgncl 32810 s3rnOLD 32921 cyc3evpm 33161 sgnsf 33173 prodfzo03 34635 circlevma 34674 circlemethhgt 34675 hgt750lemg 34686 hgt750lemb 34688 hgt750lema 34689 hgt750leme 34690 tgoldbachgtde 34692 tgoldbachgt 34695 kur14lem7 35234 brtpid3 35740 rabren3dioph 42838 oenord1ex 43339 fourierdlem114 46249 usgrexmpl1tri 48029 usgrexmpl2nb0 48035 usgrexmpl2nb1 48036 usgrexmpl2nb2 48037 usgrexmpl2nb3 48038 usgrexmpl2nb4 48039 usgrexmpl2nb5 48040 gpg3kgrtriex 48091 |
| Copyright terms: Public domain | W3C validator |