![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpid3 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 30-Apr-2021.) |
Ref | Expression |
---|---|
tpid3.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
tpid3 | ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpid3.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | tpid3g 4797 | . 2 ⊢ (𝐶 ∈ V → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 df-tp 4653 |
This theorem is referenced by: hash3tpb 14544 wrdl3s3 15011 umgrwwlks2on 29990 ex-pss 30460 s3rnOLD 32912 cyc3evpm 33143 sgnsf 33155 sgncl 34503 prodfzo03 34580 circlevma 34619 circlemethhgt 34620 hgt750lemg 34631 hgt750lemb 34633 hgt750lema 34634 hgt750leme 34635 tgoldbachgtde 34637 tgoldbachgt 34640 kur14lem7 35180 brtpid3 35685 rabren3dioph 42771 oenord1ex 43277 fourierdlem114 46141 usgrexmpl1tri 47840 usgrexmpl2nb0 47846 usgrexmpl2nb1 47847 usgrexmpl2nb2 47848 usgrexmpl2nb3 47849 usgrexmpl2nb4 47850 usgrexmpl2nb5 47851 |
Copyright terms: Public domain | W3C validator |