MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid3 Structured version   Visualization version   GIF version

Theorem tpid3 4749
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 30-Apr-2021.)
Hypothesis
Ref Expression
tpid3.1 𝐶 ∈ V
Assertion
Ref Expression
tpid3 𝐶 ∈ {𝐴, 𝐵, 𝐶}

Proof of Theorem tpid3
StepHypRef Expression
1 tpid3.1 . 2 𝐶 ∈ V
2 tpid3g 4748 . 2 (𝐶 ∈ V → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
31, 2ax-mp 5 1 𝐶 ∈ {𝐴, 𝐵, 𝐶}
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3459  {ctp 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-un 3931  df-sn 4602  df-pr 4604  df-tp 4606
This theorem is referenced by:  hash3tpb  14513  wrdl3s3  14981  umgrwwlks2on  29939  ex-pss  30409  sgncl  32810  s3rnOLD  32921  cyc3evpm  33161  sgnsf  33173  prodfzo03  34635  circlevma  34674  circlemethhgt  34675  hgt750lemg  34686  hgt750lemb  34688  hgt750lema  34689  hgt750leme  34690  tgoldbachgtde  34692  tgoldbachgt  34695  kur14lem7  35234  brtpid3  35740  rabren3dioph  42838  oenord1ex  43339  fourierdlem114  46249  usgrexmpl1tri  48029  usgrexmpl2nb0  48035  usgrexmpl2nb1  48036  usgrexmpl2nb2  48037  usgrexmpl2nb3  48038  usgrexmpl2nb4  48039  usgrexmpl2nb5  48040  gpg3kgrtriex  48091
  Copyright terms: Public domain W3C validator