Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpid3 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 30-Apr-2021.) |
Ref | Expression |
---|---|
tpid3.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
tpid3 | ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpid3.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | tpid3g 4708 | . 2 ⊢ (𝐶 ∈ V → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3429 {ctp 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3431 df-un 3891 df-sn 4562 df-pr 4564 df-tp 4566 |
This theorem is referenced by: wrdl3s3 14687 umgrwwlks2on 28330 ex-pss 28800 s3rn 31228 cyc3evpm 31425 sgnsf 31437 sgncl 32513 prodfzo03 32591 circlevma 32630 circlemethhgt 32631 hgt750lemg 32642 hgt750lemb 32644 hgt750lema 32645 hgt750leme 32646 tgoldbachgtde 32648 tgoldbachgt 32651 kur14lem7 33182 brtpid3 33675 rabren3dioph 40645 fourierdlem114 43742 |
Copyright terms: Public domain | W3C validator |