![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpid3 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 30-Apr-2021.) |
Ref | Expression |
---|---|
tpid3.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
tpid3 | ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpid3.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | tpid3g 4777 | . 2 ⊢ (𝐶 ∈ V → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐶 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 {ctp 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-sn 4630 df-pr 4632 df-tp 4634 |
This theorem is referenced by: wrdl3s3 14913 umgrwwlks2on 29211 ex-pss 29681 s3rn 32112 cyc3evpm 32309 sgnsf 32321 sgncl 33537 prodfzo03 33615 circlevma 33654 circlemethhgt 33655 hgt750lemg 33666 hgt750lemb 33668 hgt750lema 33669 hgt750leme 33670 tgoldbachgtde 33672 tgoldbachgt 33675 kur14lem7 34203 brtpid3 34692 rabren3dioph 41553 oenord1ex 42065 fourierdlem114 44936 |
Copyright terms: Public domain | W3C validator |