Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveq2d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by NM, 13-Mar-1995.) |
Ref | Expression |
---|---|
oveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
oveq2d | ⊢ (𝜑 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | oveq2 7263 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵)) |
Copyright terms: Public domain | W3C validator |