MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovcld Structured version   Visualization version   GIF version

Theorem caovcld 7465
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovclg.1 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
caovcld.2 (𝜑𝐴𝐶)
caovcld.3 (𝜑𝐵𝐷)
Assertion
Ref Expression
caovcld (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem caovcld
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 caovcld.2 . 2 (𝜑𝐴𝐶)
3 caovcld.3 . 2 (𝜑𝐵𝐷)
4 caovclg.1 . . 3 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸)
54caovclg 7464 . 2 ((𝜑 ∧ (𝐴𝐶𝐵𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸)
61, 2, 3, 5syl12anc 834 1 (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278
This theorem is referenced by:  caovdir2d  7488  caov4d  7496  climcn2  15302  grprinvd  18358  plydivlem1  25453  plydivlem4  25456
  Copyright terms: Public domain W3C validator