Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caovcld | Structured version Visualization version GIF version |
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovclg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸) |
caovcld.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
caovcld.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
Ref | Expression |
---|---|
caovcld | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | caovcld.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
3 | caovcld.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
4 | caovclg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥𝐹𝑦) ∈ 𝐸) | |
5 | 4 | caovclg 7442 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐴𝐹𝐵) ∈ 𝐸) |
6 | 1, 2, 3, 5 | syl12anc 833 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: caovdir2d 7466 caov4d 7474 climcn2 15230 grprinvd 18273 plydivlem1 25358 plydivlem4 25361 |
Copyright terms: Public domain | W3C validator |