![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvexeqsetf | Structured version Visualization version GIF version |
Description: The expression ∃𝑥𝑥 = 𝐴 means "𝐴 is a set" even if 𝐴 contains 𝑥 as a bound variable. This lemma helps minimizing axiom or df-clab 2718 usage in some cases. Extracted from the proof of issetft 3504. (Contributed by Wolf Lammen, 30-Jul-2025.) |
Ref | Expression |
---|---|
cbvexeqsetf | ⊢ (Ⅎ𝑥𝐴 → (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnfc1 2911 | . . . 4 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
2 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑦Ⅎ𝑥𝐴 | |
3 | nfvd 1914 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑦 ¬ 𝑥 = 𝐴) | |
4 | nfcvd 2909 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝑦) | |
5 | id 22 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
6 | 4, 5 | nfeqd 2919 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
7 | 6 | nfnd 1857 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 ¬ 𝑦 = 𝐴) |
8 | eqeq1 2744 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
9 | 8 | notbid 318 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 = 𝐴 ↔ ¬ 𝑦 = 𝐴)) |
10 | 9 | a1i 11 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → (𝑥 = 𝑦 → (¬ 𝑥 = 𝐴 ↔ ¬ 𝑦 = 𝐴))) |
11 | 1, 2, 3, 7, 10 | cbv2w 2343 | . . 3 ⊢ (Ⅎ𝑥𝐴 → (∀𝑥 ¬ 𝑥 = 𝐴 ↔ ∀𝑦 ¬ 𝑦 = 𝐴)) |
12 | alnex 1779 | . . 3 ⊢ (∀𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃𝑥 𝑥 = 𝐴) | |
13 | alnex 1779 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 = 𝐴 ↔ ¬ ∃𝑦 𝑦 = 𝐴) | |
14 | 11, 12, 13 | 3bitr3g 313 | . 2 ⊢ (Ⅎ𝑥𝐴 → (¬ ∃𝑥 𝑥 = 𝐴 ↔ ¬ ∃𝑦 𝑦 = 𝐴)) |
15 | 14 | con4bid 317 | 1 ⊢ (Ⅎ𝑥𝐴 → (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1777 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-cleq 2732 df-nfc 2895 |
This theorem is referenced by: issetft 3504 spcimgft 3558 |
Copyright terms: Public domain | W3C validator |