Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvopab1s | Structured version Visualization version GIF version |
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.) |
Ref | Expression |
---|---|
cbvopab1s | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑧∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) | |
2 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥 𝑤 = 〈𝑧, 𝑦〉 | |
3 | nfs1v 2153 | . . . . . 6 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
4 | 2, 3 | nfan 1902 | . . . . 5 ⊢ Ⅎ𝑥(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑) |
5 | 4 | nfex 2318 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑) |
6 | opeq1 4804 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → 〈𝑥, 𝑦〉 = 〈𝑧, 𝑦〉) | |
7 | 6 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑤 = 〈𝑥, 𝑦〉 ↔ 𝑤 = 〈𝑧, 𝑦〉)) |
8 | sbequ12 2244 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
9 | 7, 8 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑))) |
10 | 9 | exbidv 1924 | . . . 4 ⊢ (𝑥 = 𝑧 → (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑))) |
11 | 1, 5, 10 | cbvexv1 2339 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑)) |
12 | 11 | abbii 2808 | . 2 ⊢ {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑)} |
13 | df-opab 5137 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
14 | df-opab 5137 | . 2 ⊢ {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} = {𝑤 ∣ ∃𝑧∃𝑦(𝑤 = 〈𝑧, 𝑦〉 ∧ [𝑧 / 𝑥]𝜑)} | |
15 | 12, 13, 14 | 3eqtr4i 2776 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑧, 𝑦〉 ∣ [𝑧 / 𝑥]𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 [wsb 2067 {cab 2715 〈cop 4567 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |