MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvopab1s Structured version   Visualization version   GIF version

Theorem cbvopab1s 5244
Description: Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.)
Assertion
Ref Expression
cbvopab1s {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ [𝑧 / 𝑥]𝜑}
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem cbvopab1s
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . 4 𝑧𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
2 nfv 1913 . . . . . 6 𝑥 𝑤 = ⟨𝑧, 𝑦
3 nfs1v 2157 . . . . . 6 𝑥[𝑧 / 𝑥]𝜑
42, 3nfan 1898 . . . . 5 𝑥(𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑)
54nfex 2328 . . . 4 𝑥𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑)
6 opeq1 4897 . . . . . . 7 (𝑥 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑧, 𝑦⟩)
76eqeq2d 2751 . . . . . 6 (𝑥 = 𝑧 → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ 𝑤 = ⟨𝑧, 𝑦⟩))
8 sbequ12 2252 . . . . . 6 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
97, 8anbi12d 631 . . . . 5 (𝑥 = 𝑧 → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑)))
109exbidv 1920 . . . 4 (𝑥 = 𝑧 → (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑)))
111, 5, 10cbvexv1 2348 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑))
1211abbii 2812 . 2 {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑)}
13 df-opab 5229 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
14 df-opab 5229 . 2 {⟨𝑧, 𝑦⟩ ∣ [𝑧 / 𝑥]𝜑} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ [𝑧 / 𝑥]𝜑)}
1512, 13, 143eqtr4i 2778 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ [𝑧 / 𝑥]𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1777  [wsb 2064  {cab 2717  cop 4654  {copab 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator