| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvoprab13vw | Structured version Visualization version GIF version | ||
| Description: Change the first and third bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvoprab13vw.1 | ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbvoprab13vw | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑦〉, 𝑣〉 ∣ 𝜒} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4853 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑤 → 〈𝑥, 𝑦〉 = 〈𝑤, 𝑦〉) | |
| 2 | 1 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → 〈𝑥, 𝑦〉 = 〈𝑤, 𝑦〉) |
| 3 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → 𝑧 = 𝑣) | |
| 4 | 2, 3 | opeq12d 4861 | . . . . . . . 8 ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → 〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑤, 𝑦〉, 𝑣〉) |
| 5 | 4 | eqeq2d 2745 | . . . . . . 7 ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → (𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉)) |
| 6 | cbvoprab13vw.1 | . . . . . . 7 ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → (𝜓 ↔ 𝜒)) | |
| 7 | 5, 6 | anbi12d 632 | . . . . . 6 ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → ((𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ (𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉 ∧ 𝜒))) |
| 8 | 7 | cbvexdvaw 2037 | . . . . 5 ⊢ (𝑥 = 𝑤 → (∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑣(𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉 ∧ 𝜒))) |
| 9 | 8 | exbidv 1920 | . . . 4 ⊢ (𝑥 = 𝑤 → (∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑦∃𝑣(𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉 ∧ 𝜒))) |
| 10 | 9 | cbvexvw 2035 | . . 3 ⊢ (∃𝑥∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑤∃𝑦∃𝑣(𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉 ∧ 𝜒)) |
| 11 | 10 | abbii 2801 | . 2 ⊢ {𝑡 ∣ ∃𝑥∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)} = {𝑡 ∣ ∃𝑤∃𝑦∃𝑣(𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉 ∧ 𝜒)} |
| 12 | df-oprab 7417 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {𝑡 ∣ ∃𝑥∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)} | |
| 13 | df-oprab 7417 | . 2 ⊢ {〈〈𝑤, 𝑦〉, 𝑣〉 ∣ 𝜒} = {𝑡 ∣ ∃𝑤∃𝑦∃𝑣(𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉 ∧ 𝜒)} | |
| 14 | 11, 12, 13 | 3eqtr4i 2767 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑦〉, 𝑣〉 ∣ 𝜒} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 {cab 2712 〈cop 4612 {coprab 7414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-oprab 7417 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |