![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvoprab13vw | Structured version Visualization version GIF version |
Description: Change the first and third bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvoprab13vw.1 | ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
cbvoprab13vw | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑦〉, 𝑣〉 ∣ 𝜒} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4897 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑤 → 〈𝑥, 𝑦〉 = 〈𝑤, 𝑦〉) | |
2 | 1 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → 〈𝑥, 𝑦〉 = 〈𝑤, 𝑦〉) |
3 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → 𝑧 = 𝑣) | |
4 | 2, 3 | opeq12d 4905 | . . . . . . . 8 ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → 〈〈𝑥, 𝑦〉, 𝑧〉 = 〈〈𝑤, 𝑦〉, 𝑣〉) |
5 | 4 | eqeq2d 2751 | . . . . . . 7 ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → (𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ↔ 𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉)) |
6 | cbvoprab13vw.1 | . . . . . . 7 ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → (𝜓 ↔ 𝜒)) | |
7 | 5, 6 | anbi12d 631 | . . . . . 6 ⊢ ((𝑥 = 𝑤 ∧ 𝑧 = 𝑣) → ((𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ (𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉 ∧ 𝜒))) |
8 | 7 | cbvexdvaw 2038 | . . . . 5 ⊢ (𝑥 = 𝑤 → (∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑣(𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉 ∧ 𝜒))) |
9 | 8 | exbidv 1920 | . . . 4 ⊢ (𝑥 = 𝑤 → (∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑦∃𝑣(𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉 ∧ 𝜒))) |
10 | 9 | cbvexvw 2036 | . . 3 ⊢ (∃𝑥∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓) ↔ ∃𝑤∃𝑦∃𝑣(𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉 ∧ 𝜒)) |
11 | 10 | abbii 2812 | . 2 ⊢ {𝑡 ∣ ∃𝑥∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)} = {𝑡 ∣ ∃𝑤∃𝑦∃𝑣(𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉 ∧ 𝜒)} |
12 | df-oprab 7447 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {𝑡 ∣ ∃𝑥∃𝑦∃𝑧(𝑡 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)} | |
13 | df-oprab 7447 | . 2 ⊢ {〈〈𝑤, 𝑦〉, 𝑣〉 ∣ 𝜒} = {𝑡 ∣ ∃𝑤∃𝑦∃𝑣(𝑡 = 〈〈𝑤, 𝑦〉, 𝑣〉 ∧ 𝜒)} | |
14 | 11, 12, 13 | 3eqtr4i 2778 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈〈𝑤, 𝑦〉, 𝑣〉 ∣ 𝜒} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 {cab 2717 〈cop 4654 {coprab 7444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-oprab 7447 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |