Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvoprab13vw Structured version   Visualization version   GIF version

Theorem cbvoprab13vw 36202
Description: Change the first and third bound variables in an operation abstraction, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvoprab13vw.1 ((𝑥 = 𝑤𝑧 = 𝑣) → (𝜓𝜒))
Assertion
Ref Expression
cbvoprab13vw {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑦⟩, 𝑣⟩ ∣ 𝜒}
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣   𝜓,𝑤,𝑣   𝜒,𝑥,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑦,𝑤,𝑣)

Proof of Theorem cbvoprab13vw
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 opeq1 4833 . . . . . . . . . 10 (𝑥 = 𝑤 → ⟨𝑥, 𝑦⟩ = ⟨𝑤, 𝑦⟩)
21adantr 480 . . . . . . . . 9 ((𝑥 = 𝑤𝑧 = 𝑣) → ⟨𝑥, 𝑦⟩ = ⟨𝑤, 𝑦⟩)
3 simpr 484 . . . . . . . . 9 ((𝑥 = 𝑤𝑧 = 𝑣) → 𝑧 = 𝑣)
42, 3opeq12d 4841 . . . . . . . 8 ((𝑥 = 𝑤𝑧 = 𝑣) → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ = ⟨⟨𝑤, 𝑦⟩, 𝑣⟩)
54eqeq2d 2740 . . . . . . 7 ((𝑥 = 𝑤𝑧 = 𝑣) → (𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ↔ 𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑣⟩))
6 cbvoprab13vw.1 . . . . . . 7 ((𝑥 = 𝑤𝑧 = 𝑣) → (𝜓𝜒))
75, 6anbi12d 632 . . . . . 6 ((𝑥 = 𝑤𝑧 = 𝑣) → ((𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ (𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑣⟩ ∧ 𝜒)))
87cbvexdvaw 2039 . . . . 5 (𝑥 = 𝑤 → (∃𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑣(𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑣⟩ ∧ 𝜒)))
98exbidv 1921 . . . 4 (𝑥 = 𝑤 → (∃𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑦𝑣(𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑣⟩ ∧ 𝜒)))
109cbvexvw 2037 . . 3 (∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓) ↔ ∃𝑤𝑦𝑣(𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑣⟩ ∧ 𝜒))
1110abbii 2796 . 2 {𝑡 ∣ ∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)} = {𝑡 ∣ ∃𝑤𝑦𝑣(𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑣⟩ ∧ 𝜒)}
12 df-oprab 7373 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {𝑡 ∣ ∃𝑥𝑦𝑧(𝑡 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜓)}
13 df-oprab 7373 . 2 {⟨⟨𝑤, 𝑦⟩, 𝑣⟩ ∣ 𝜒} = {𝑡 ∣ ∃𝑤𝑦𝑣(𝑡 = ⟨⟨𝑤, 𝑦⟩, 𝑣⟩ ∧ 𝜒)}
1411, 12, 133eqtr4i 2762 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑤, 𝑦⟩, 𝑣⟩ ∣ 𝜒}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  {cab 2707  cop 4591  {coprab 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-oprab 7373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator