| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrabw | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3458 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2376. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2141. (Revised by Wolf Lammen, 19-Jul-2025.) |
| Ref | Expression |
|---|---|
| cbvrabw.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvrabw.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvrabw.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvrabw.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvrabw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrabw | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrabw.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | nfcri 2890 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 3 | cbvrabw.3 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 2, 3 | nfan 1899 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 5 | cbvrabw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 5 | nfcri 2890 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 7 | cbvrabw.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 8 | 6, 7 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓) |
| 9 | eleq1w 2817 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | cbvrabw.5 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 11 | 9, 10 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 12 | 4, 8, 11 | cbvabw 2806 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
| 13 | df-rab 3416 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 14 | df-rab 3416 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | |
| 15 | 12, 13, 14 | 3eqtr4i 2768 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 {cab 2713 Ⅎwnfc 2883 {crab 3415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 |
| This theorem is referenced by: elrabsf 3811 f1ossf1o 7118 tfis 7850 cantnflem1 9703 scottexs 9901 scott0s 9902 elmptrab 23765 bnj1534 34884 scottexf 38192 scott0f 38193 aks6d1c7lem3 42195 unitscyglem3 42210 unitscyglem4 42211 eq0rabdioph 42799 rexrabdioph 42817 rexfrabdioph 42818 elnn0rabdioph 42826 dvdsrabdioph 42833 binomcxplemdvsum 44379 fnlimcnv 45696 fnlimabslt 45708 stoweidlem34 46063 stoweidlem59 46088 pimltmnf2f 46726 pimgtpnf2f 46734 pimltpnf2f 46741 issmff 46763 smfpimltxrmptf 46787 smfpreimagtf 46797 smflim 46806 smfpimgtxr 46809 smfpimgtxrmptf 46813 smflim2 46835 smflimsup 46857 smfliminf 46860 |
| Copyright terms: Public domain | W3C validator |