| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrabw | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3435 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2144. (Revised by Wolf Lammen, 19-Jul-2025.) |
| Ref | Expression |
|---|---|
| cbvrabw.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvrabw.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvrabw.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvrabw.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvrabw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrabw | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrabw.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | nfcri 2886 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 3 | cbvrabw.3 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 2, 3 | nfan 1900 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 5 | cbvrabw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 5 | nfcri 2886 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 7 | cbvrabw.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 8 | 6, 7 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓) |
| 9 | eleq1w 2814 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | cbvrabw.5 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 11 | 9, 10 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 12 | 4, 8, 11 | cbvabw 2802 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
| 13 | df-rab 3396 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 14 | df-rab 3396 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | |
| 15 | 12, 13, 14 | 3eqtr4i 2764 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 {cab 2709 Ⅎwnfc 2879 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 |
| This theorem is referenced by: elrabsf 3782 f1ossf1o 7056 tfis 7780 cantnflem1 9574 scottexs 9775 scott0s 9776 elmptrab 23737 bnj1534 34857 scottexf 38208 scott0f 38209 aks6d1c7lem3 42215 unitscyglem3 42230 unitscyglem4 42231 eq0rabdioph 42809 rexrabdioph 42827 rexfrabdioph 42828 elnn0rabdioph 42836 dvdsrabdioph 42843 binomcxplemdvsum 44388 fnlimcnv 45705 fnlimabslt 45717 stoweidlem34 46072 stoweidlem59 46097 pimltmnf2f 46735 pimgtpnf2f 46743 pimltpnf2f 46750 issmff 46772 smfpimltxrmptf 46796 smfpreimagtf 46806 smflim 46815 smfpimgtxr 46818 smfpimgtxrmptf 46822 smflim2 46844 smflimsup 46866 smfliminf 46869 |
| Copyright terms: Public domain | W3C validator |