MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabw Structured version   Visualization version   GIF version

Theorem cbvrabw 3424
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3425 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrabw.1 𝑥𝐴
cbvrabw.2 𝑦𝐴
cbvrabw.3 𝑦𝜑
cbvrabw.4 𝑥𝜓
cbvrabw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabw {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrabw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . 4 𝑧(𝑥𝐴𝜑)
2 cbvrabw.1 . . . . . 6 𝑥𝐴
32nfcri 2894 . . . . 5 𝑥 𝑧𝐴
4 nfs1v 2153 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfan 1902 . . . 4 𝑥(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
6 eleq1w 2821 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
7 sbequ12 2244 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
86, 7anbi12d 631 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)))
91, 5, 8cbvabw 2812 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)}
10 cbvrabw.2 . . . . . 6 𝑦𝐴
1110nfcri 2894 . . . . 5 𝑦 𝑧𝐴
12 cbvrabw.3 . . . . . 6 𝑦𝜑
1312nfsbv 2324 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1411, 13nfan 1902 . . . 4 𝑦(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
15 nfv 1917 . . . 4 𝑧(𝑦𝐴𝜓)
16 eleq1w 2821 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
17 sbequ 2086 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
18 cbvrabw.4 . . . . . . 7 𝑥𝜓
19 cbvrabw.5 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
2018, 19sbiev 2309 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
2117, 20bitrdi 287 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
2216, 21anbi12d 631 . . . 4 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
2314, 15, 22cbvabw 2812 . . 3 {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
249, 23eqtri 2766 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
25 df-rab 3073 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
26 df-rab 3073 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
2724, 25, 263eqtr4i 2776 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  [wsb 2067  wcel 2106  {cab 2715  wnfc 2887  {crab 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073
This theorem is referenced by:  elrabsf  3764  f1ossf1o  7000  tfis  7701  cantnflem1  9447  scottexs  9645  scott0s  9646  elmptrab  22978  bnj1534  32833  scottexf  36326  scott0f  36327  eq0rabdioph  40598  rexrabdioph  40616  rexfrabdioph  40617  elnn0rabdioph  40625  dvdsrabdioph  40632  binomcxplemdvsum  41973  fnlimcnv  43208  fnlimabslt  43220  stoweidlem34  43575  stoweidlem59  43600  pimltmnf2f  44235  pimgtpnf2f  44242  pimltpnf2f  44249  issmff  44270  smfpimltxrmpt  44294  smfpreimagtf  44303  smflim  44312  smfpimgtxr  44315  smfpimgtxrmpt  44319  smflim2  44339  smflimsup  44361  smfliminf  44364
  Copyright terms: Public domain W3C validator