MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabw Structured version   Visualization version   GIF version

Theorem cbvrabw 3481
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3487 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2141. (Revised by Wolf Lammen, 19-Jul-2025.)
Hypotheses
Ref Expression
cbvrabw.1 𝑥𝐴
cbvrabw.2 𝑦𝐴
cbvrabw.3 𝑦𝜑
cbvrabw.4 𝑥𝜓
cbvrabw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabw {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrabw
StepHypRef Expression
1 cbvrabw.2 . . . . 5 𝑦𝐴
21nfcri 2900 . . . 4 𝑦 𝑥𝐴
3 cbvrabw.3 . . . 4 𝑦𝜑
42, 3nfan 1898 . . 3 𝑦(𝑥𝐴𝜑)
5 cbvrabw.1 . . . . 5 𝑥𝐴
65nfcri 2900 . . . 4 𝑥 𝑦𝐴
7 cbvrabw.4 . . . 4 𝑥𝜓
86, 7nfan 1898 . . 3 𝑥(𝑦𝐴𝜓)
9 eleq1w 2827 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
10 cbvrabw.5 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
119, 10anbi12d 631 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
124, 8, 11cbvabw 2816 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
13 df-rab 3444 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
14 df-rab 3444 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
1512, 13, 143eqtr4i 2778 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  {cab 2717  wnfc 2893  {crab 3443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444
This theorem is referenced by:  elrabsf  3853  f1ossf1o  7162  tfis  7892  cantnflem1  9758  scottexs  9956  scott0s  9957  elmptrab  23856  bnj1534  34829  scottexf  38128  scott0f  38129  aks6d1c7lem3  42139  unitscyglem3  42154  unitscyglem4  42155  eq0rabdioph  42732  rexrabdioph  42750  rexfrabdioph  42751  elnn0rabdioph  42759  dvdsrabdioph  42766  binomcxplemdvsum  44324  fnlimcnv  45588  fnlimabslt  45600  stoweidlem34  45955  stoweidlem59  45980  pimltmnf2f  46618  pimgtpnf2f  46626  pimltpnf2f  46633  issmff  46655  smfpimltxrmptf  46679  smfpreimagtf  46689  smflim  46698  smfpimgtxr  46701  smfpimgtxrmptf  46705  smflim2  46727  smflimsup  46749  smfliminf  46752
  Copyright terms: Public domain W3C validator