MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabw Structured version   Visualization version   GIF version

Theorem cbvrabw 3437
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3438 with a disjoint variable condition, which does not require ax-13 2379. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrabw.1 𝑥𝐴
cbvrabw.2 𝑦𝐴
cbvrabw.3 𝑦𝜑
cbvrabw.4 𝑥𝜓
cbvrabw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabw {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrabw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . 4 𝑧(𝑥𝐴𝜑)
2 cbvrabw.1 . . . . . 6 𝑥𝐴
32nfcri 2943 . . . . 5 𝑥 𝑧𝐴
4 nfs1v 2157 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfan 1900 . . . 4 𝑥(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
6 eleq1w 2872 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
7 sbequ12 2250 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
86, 7anbi12d 633 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)))
91, 5, 8cbvabw 2867 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)}
10 cbvrabw.2 . . . . . 6 𝑦𝐴
1110nfcri 2943 . . . . 5 𝑦 𝑧𝐴
12 cbvrabw.3 . . . . . 6 𝑦𝜑
1312nfsbv 2338 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1411, 13nfan 1900 . . . 4 𝑦(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
15 nfv 1915 . . . 4 𝑧(𝑦𝐴𝜓)
16 eleq1w 2872 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
17 sbequ 2088 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
18 cbvrabw.4 . . . . . . 7 𝑥𝜓
19 cbvrabw.5 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
2018, 19sbiev 2322 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
2117, 20syl6bb 290 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
2216, 21anbi12d 633 . . . 4 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
2314, 15, 22cbvabw 2867 . . 3 {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
249, 23eqtri 2821 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
25 df-rab 3115 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
26 df-rab 3115 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
2724, 25, 263eqtr4i 2831 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wnf 1785  [wsb 2069  wcel 2111  {cab 2776  wnfc 2936  {crab 3110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rab 3115
This theorem is referenced by:  elrabsf  3764  f1ossf1o  6867  tfis  7549  cantnflem1  9136  scottexs  9300  scott0s  9301  elmptrab  22432  bnj1534  32235  scottexf  35606  scott0f  35607  eq0rabdioph  39717  rexrabdioph  39735  rexfrabdioph  39736  elnn0rabdioph  39744  dvdsrabdioph  39751  binomcxplemdvsum  41059  fnlimcnv  42309  fnlimabslt  42321  stoweidlem34  42676  stoweidlem59  42701  pimltmnf2  43336  pimgtpnf2  43342  pimltpnf2  43348  issmff  43368  smfpimltxrmpt  43392  smfpreimagtf  43401  smflim  43410  smfpimgtxr  43413  smfpimgtxrmpt  43417  smflim2  43437  smflimsup  43459  smfliminf  43462
  Copyright terms: Public domain W3C validator