MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabw Structured version   Visualization version   GIF version

Theorem cbvrabw 3414
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3415 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrabw.1 𝑥𝐴
cbvrabw.2 𝑦𝐴
cbvrabw.3 𝑦𝜑
cbvrabw.4 𝑥𝜓
cbvrabw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabw {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrabw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . 4 𝑧(𝑥𝐴𝜑)
2 cbvrabw.1 . . . . . 6 𝑥𝐴
32nfcri 2893 . . . . 5 𝑥 𝑧𝐴
4 nfs1v 2155 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfan 1903 . . . 4 𝑥(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
6 eleq1w 2821 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
7 sbequ12 2247 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
86, 7anbi12d 630 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)))
91, 5, 8cbvabw 2813 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)}
10 cbvrabw.2 . . . . . 6 𝑦𝐴
1110nfcri 2893 . . . . 5 𝑦 𝑧𝐴
12 cbvrabw.3 . . . . . 6 𝑦𝜑
1312nfsbv 2328 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1411, 13nfan 1903 . . . 4 𝑦(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
15 nfv 1918 . . . 4 𝑧(𝑦𝐴𝜓)
16 eleq1w 2821 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
17 sbequ 2087 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
18 cbvrabw.4 . . . . . . 7 𝑥𝜓
19 cbvrabw.5 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
2018, 19sbiev 2312 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
2117, 20bitrdi 286 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
2216, 21anbi12d 630 . . . 4 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
2314, 15, 22cbvabw 2813 . . 3 {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
249, 23eqtri 2766 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
25 df-rab 3072 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
26 df-rab 3072 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
2724, 25, 263eqtr4i 2776 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  [wsb 2068  wcel 2108  {cab 2715  wnfc 2886  {crab 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072
This theorem is referenced by:  elrabsf  3759  f1ossf1o  6982  tfis  7676  cantnflem1  9377  scottexs  9576  scott0s  9577  elmptrab  22886  bnj1534  32733  scottexf  36253  scott0f  36254  eq0rabdioph  40514  rexrabdioph  40532  rexfrabdioph  40533  elnn0rabdioph  40541  dvdsrabdioph  40548  binomcxplemdvsum  41862  fnlimcnv  43098  fnlimabslt  43110  stoweidlem34  43465  stoweidlem59  43490  pimltmnf2  44125  pimgtpnf2  44131  pimltpnf2  44137  issmff  44157  smfpimltxrmpt  44181  smfpreimagtf  44190  smflim  44199  smfpimgtxr  44202  smfpimgtxrmpt  44206  smflim2  44226  smflimsup  44248  smfliminf  44251
  Copyright terms: Public domain W3C validator