MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabw Structured version   Visualization version   GIF version

Theorem cbvrabw 3441
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3446 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2142. (Revised by Wolf Lammen, 19-Jul-2025.)
Hypotheses
Ref Expression
cbvrabw.1 𝑥𝐴
cbvrabw.2 𝑦𝐴
cbvrabw.3 𝑦𝜑
cbvrabw.4 𝑥𝜓
cbvrabw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabw {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrabw
StepHypRef Expression
1 cbvrabw.2 . . . . 5 𝑦𝐴
21nfcri 2883 . . . 4 𝑦 𝑥𝐴
3 cbvrabw.3 . . . 4 𝑦𝜑
42, 3nfan 1899 . . 3 𝑦(𝑥𝐴𝜑)
5 cbvrabw.1 . . . . 5 𝑥𝐴
65nfcri 2883 . . . 4 𝑥 𝑦𝐴
7 cbvrabw.4 . . . 4 𝑥𝜓
86, 7nfan 1899 . . 3 𝑥(𝑦𝐴𝜓)
9 eleq1w 2811 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
10 cbvrabw.5 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
119, 10anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
124, 8, 11cbvabw 2800 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
13 df-rab 3406 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
14 df-rab 3406 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
1512, 13, 143eqtr4i 2762 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  {cab 2707  wnfc 2876  {crab 3405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406
This theorem is referenced by:  elrabsf  3799  f1ossf1o  7100  tfis  7831  cantnflem1  9642  scottexs  9840  scott0s  9841  elmptrab  23714  bnj1534  34843  scottexf  38162  scott0f  38163  aks6d1c7lem3  42170  unitscyglem3  42185  unitscyglem4  42186  eq0rabdioph  42764  rexrabdioph  42782  rexfrabdioph  42783  elnn0rabdioph  42791  dvdsrabdioph  42798  binomcxplemdvsum  44344  fnlimcnv  45665  fnlimabslt  45677  stoweidlem34  46032  stoweidlem59  46057  pimltmnf2f  46695  pimgtpnf2f  46703  pimltpnf2f  46710  issmff  46732  smfpimltxrmptf  46756  smfpreimagtf  46766  smflim  46775  smfpimgtxr  46778  smfpimgtxrmptf  46782  smflim2  46804  smflimsup  46826  smfliminf  46829
  Copyright terms: Public domain W3C validator