MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabw Structured version   Visualization version   GIF version

Theorem cbvrabw 3452
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3458 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2376. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2141. (Revised by Wolf Lammen, 19-Jul-2025.)
Hypotheses
Ref Expression
cbvrabw.1 𝑥𝐴
cbvrabw.2 𝑦𝐴
cbvrabw.3 𝑦𝜑
cbvrabw.4 𝑥𝜓
cbvrabw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabw {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrabw
StepHypRef Expression
1 cbvrabw.2 . . . . 5 𝑦𝐴
21nfcri 2890 . . . 4 𝑦 𝑥𝐴
3 cbvrabw.3 . . . 4 𝑦𝜑
42, 3nfan 1899 . . 3 𝑦(𝑥𝐴𝜑)
5 cbvrabw.1 . . . . 5 𝑥𝐴
65nfcri 2890 . . . 4 𝑥 𝑦𝐴
7 cbvrabw.4 . . . 4 𝑥𝜓
86, 7nfan 1899 . . 3 𝑥(𝑦𝐴𝜓)
9 eleq1w 2817 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
10 cbvrabw.5 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
119, 10anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
124, 8, 11cbvabw 2806 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
13 df-rab 3416 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
14 df-rab 3416 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
1512, 13, 143eqtr4i 2768 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2108  {cab 2713  wnfc 2883  {crab 3415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-rab 3416
This theorem is referenced by:  elrabsf  3811  f1ossf1o  7118  tfis  7850  cantnflem1  9703  scottexs  9901  scott0s  9902  elmptrab  23765  bnj1534  34884  scottexf  38192  scott0f  38193  aks6d1c7lem3  42195  unitscyglem3  42210  unitscyglem4  42211  eq0rabdioph  42799  rexrabdioph  42817  rexfrabdioph  42818  elnn0rabdioph  42826  dvdsrabdioph  42833  binomcxplemdvsum  44379  fnlimcnv  45696  fnlimabslt  45708  stoweidlem34  46063  stoweidlem59  46088  pimltmnf2f  46726  pimgtpnf2f  46734  pimltpnf2f  46741  issmff  46763  smfpimltxrmptf  46787  smfpreimagtf  46797  smflim  46806  smfpimgtxr  46809  smfpimgtxrmptf  46813  smflim2  46835  smflimsup  46857  smfliminf  46860
  Copyright terms: Public domain W3C validator