![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrabw | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3472 with a disjoint variable condition, which does not require ax-13 2366. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2366. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvrabw.1 | ⊢ Ⅎ𝑥𝐴 |
cbvrabw.2 | ⊢ Ⅎ𝑦𝐴 |
cbvrabw.3 | ⊢ Ⅎ𝑦𝜑 |
cbvrabw.4 | ⊢ Ⅎ𝑥𝜓 |
cbvrabw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrabw | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) | |
2 | cbvrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2886 | . . . . 5 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐴 |
4 | nfs1v 2145 | . . . . 5 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
5 | 3, 4 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
6 | eleq1w 2812 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
7 | sbequ12 2238 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
8 | 6, 7 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑))) |
9 | 1, 5, 8 | cbvabw 2802 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} |
10 | cbvrabw.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
11 | 10 | nfcri 2886 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐴 |
12 | cbvrabw.3 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
13 | 12 | nfsbv 2318 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
14 | 11, 13 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑦(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) |
15 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) | |
16 | eleq1w 2812 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
17 | sbequ 2078 | . . . . . 6 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
18 | cbvrabw.4 | . . . . . . 7 ⊢ Ⅎ𝑥𝜓 | |
19 | cbvrabw.5 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
20 | 18, 19 | sbiev 2303 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
21 | 17, 20 | bitrdi 286 | . . . . 5 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) |
22 | 16, 21 | anbi12d 630 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
23 | 14, 15, 22 | cbvabw 2802 | . . 3 ⊢ {𝑧 ∣ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
24 | 9, 23 | eqtri 2756 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
25 | df-rab 3431 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
26 | df-rab 3431 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | |
27 | 24, 25, 26 | 3eqtr4i 2766 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 [wsb 2059 ∈ wcel 2098 {cab 2705 Ⅎwnfc 2879 {crab 3430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-rab 3431 |
This theorem is referenced by: elrabsf 3827 f1ossf1o 7143 tfis 7865 cantnflem1 9720 scottexs 9918 scott0s 9919 elmptrab 23751 bnj1534 34517 scottexf 37674 scott0f 37675 aks6d1c7lem3 41686 eq0rabdioph 42227 rexrabdioph 42245 rexfrabdioph 42246 elnn0rabdioph 42254 dvdsrabdioph 42261 binomcxplemdvsum 43823 fnlimcnv 45084 fnlimabslt 45096 stoweidlem34 45451 stoweidlem59 45476 pimltmnf2f 46114 pimgtpnf2f 46122 pimltpnf2f 46129 issmff 46151 smfpimltxrmptf 46175 smfpreimagtf 46185 smflim 46194 smfpimgtxr 46197 smfpimgtxrmptf 46201 smflim2 46223 smflimsup 46245 smfliminf 46248 |
Copyright terms: Public domain | W3C validator |