MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabw Structured version   Visualization version   GIF version

Theorem cbvrabw 3444
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3449 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2142. (Revised by Wolf Lammen, 19-Jul-2025.)
Hypotheses
Ref Expression
cbvrabw.1 𝑥𝐴
cbvrabw.2 𝑦𝐴
cbvrabw.3 𝑦𝜑
cbvrabw.4 𝑥𝜓
cbvrabw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabw {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrabw
StepHypRef Expression
1 cbvrabw.2 . . . . 5 𝑦𝐴
21nfcri 2884 . . . 4 𝑦 𝑥𝐴
3 cbvrabw.3 . . . 4 𝑦𝜑
42, 3nfan 1899 . . 3 𝑦(𝑥𝐴𝜑)
5 cbvrabw.1 . . . . 5 𝑥𝐴
65nfcri 2884 . . . 4 𝑥 𝑦𝐴
7 cbvrabw.4 . . . 4 𝑥𝜓
86, 7nfan 1899 . . 3 𝑥(𝑦𝐴𝜓)
9 eleq1w 2812 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
10 cbvrabw.5 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
119, 10anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
124, 8, 11cbvabw 2801 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
13 df-rab 3409 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
14 df-rab 3409 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
1512, 13, 143eqtr4i 2763 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  {cab 2708  wnfc 2877  {crab 3408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409
This theorem is referenced by:  elrabsf  3802  f1ossf1o  7103  tfis  7834  cantnflem1  9649  scottexs  9847  scott0s  9848  elmptrab  23721  bnj1534  34850  scottexf  38169  scott0f  38170  aks6d1c7lem3  42177  unitscyglem3  42192  unitscyglem4  42193  eq0rabdioph  42771  rexrabdioph  42789  rexfrabdioph  42790  elnn0rabdioph  42798  dvdsrabdioph  42805  binomcxplemdvsum  44351  fnlimcnv  45672  fnlimabslt  45684  stoweidlem34  46039  stoweidlem59  46064  pimltmnf2f  46702  pimgtpnf2f  46710  pimltpnf2f  46717  issmff  46739  smfpimltxrmptf  46763  smfpreimagtf  46773  smflim  46782  smfpimgtxr  46785  smfpimgtxrmptf  46789  smflim2  46811  smflimsup  46833  smfliminf  46836
  Copyright terms: Public domain W3C validator