| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrabw | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3449 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2142. (Revised by Wolf Lammen, 19-Jul-2025.) |
| Ref | Expression |
|---|---|
| cbvrabw.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvrabw.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvrabw.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvrabw.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvrabw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrabw | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrabw.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | nfcri 2884 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 3 | cbvrabw.3 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 2, 3 | nfan 1899 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 5 | cbvrabw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 5 | nfcri 2884 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 7 | cbvrabw.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 8 | 6, 7 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓) |
| 9 | eleq1w 2812 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | cbvrabw.5 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 11 | 9, 10 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 12 | 4, 8, 11 | cbvabw 2801 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
| 13 | df-rab 3409 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 14 | df-rab 3409 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | |
| 15 | 12, 13, 14 | 3eqtr4i 2763 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 |
| This theorem is referenced by: elrabsf 3802 f1ossf1o 7103 tfis 7834 cantnflem1 9649 scottexs 9847 scott0s 9848 elmptrab 23721 bnj1534 34850 scottexf 38169 scott0f 38170 aks6d1c7lem3 42177 unitscyglem3 42192 unitscyglem4 42193 eq0rabdioph 42771 rexrabdioph 42789 rexfrabdioph 42790 elnn0rabdioph 42798 dvdsrabdioph 42805 binomcxplemdvsum 44351 fnlimcnv 45672 fnlimabslt 45684 stoweidlem34 46039 stoweidlem59 46064 pimltmnf2f 46702 pimgtpnf2f 46710 pimltpnf2f 46717 issmff 46739 smfpimltxrmptf 46763 smfpreimagtf 46773 smflim 46782 smfpimgtxr 46785 smfpimgtxrmptf 46789 smflim2 46811 smflimsup 46833 smfliminf 46836 |
| Copyright terms: Public domain | W3C validator |