MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabw Structured version   Visualization version   GIF version

Theorem cbvrabw 3489
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3490 with a disjoint variable condition, which does not require ax-13 2390. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrabw.1 𝑥𝐴
cbvrabw.2 𝑦𝐴
cbvrabw.3 𝑦𝜑
cbvrabw.4 𝑥𝜓
cbvrabw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabw {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrabw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . 4 𝑧(𝑥𝐴𝜑)
2 cbvrabw.1 . . . . . 6 𝑥𝐴
32nfcri 2971 . . . . 5 𝑥 𝑧𝐴
4 nfs1v 2160 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfan 1900 . . . 4 𝑥(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
6 eleq1w 2895 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
7 sbequ12 2253 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
86, 7anbi12d 632 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)))
91, 5, 8cbvabw 2890 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)}
10 cbvrabw.2 . . . . . 6 𝑦𝐴
1110nfcri 2971 . . . . 5 𝑦 𝑧𝐴
12 cbvrabw.3 . . . . . 6 𝑦𝜑
1312nfsbv 2349 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1411, 13nfan 1900 . . . 4 𝑦(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
15 nfv 1915 . . . 4 𝑧(𝑦𝐴𝜓)
16 eleq1w 2895 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
17 sbequ 2090 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
18 cbvrabw.4 . . . . . . 7 𝑥𝜓
19 cbvrabw.5 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
2018, 19sbiev 2330 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
2117, 20syl6bb 289 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
2216, 21anbi12d 632 . . . 4 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
2314, 15, 22cbvabw 2890 . . 3 {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
249, 23eqtri 2844 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
25 df-rab 3147 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
26 df-rab 3147 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
2724, 25, 263eqtr4i 2854 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wnf 1784  [wsb 2069  wcel 2114  {cab 2799  wnfc 2961  {crab 3142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147
This theorem is referenced by:  elrabsf  3816  f1ossf1o  6890  tfis  7569  cantnflem1  9152  scottexs  9316  scott0s  9317  elmptrab  22435  bnj1534  32125  scottexf  35461  scott0f  35462  eq0rabdioph  39422  rexrabdioph  39440  rexfrabdioph  39441  elnn0rabdioph  39449  dvdsrabdioph  39456  binomcxplemdvsum  40736  fnlimcnv  41997  fnlimabslt  42009  stoweidlem34  42368  stoweidlem59  42393  pimltmnf2  43028  pimgtpnf2  43034  pimltpnf2  43040  issmff  43060  smfpimltxrmpt  43084  smfpreimagtf  43093  smflim  43102  smfpimgtxr  43105  smfpimgtxrmpt  43109  smflim2  43129  smflimsup  43151  smfliminf  43154
  Copyright terms: Public domain W3C validator