MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabw Structured version   Visualization version   GIF version

Theorem cbvrabw 3430
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3435 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2144. (Revised by Wolf Lammen, 19-Jul-2025.)
Hypotheses
Ref Expression
cbvrabw.1 𝑥𝐴
cbvrabw.2 𝑦𝐴
cbvrabw.3 𝑦𝜑
cbvrabw.4 𝑥𝜓
cbvrabw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabw {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrabw
StepHypRef Expression
1 cbvrabw.2 . . . . 5 𝑦𝐴
21nfcri 2886 . . . 4 𝑦 𝑥𝐴
3 cbvrabw.3 . . . 4 𝑦𝜑
42, 3nfan 1900 . . 3 𝑦(𝑥𝐴𝜑)
5 cbvrabw.1 . . . . 5 𝑥𝐴
65nfcri 2886 . . . 4 𝑥 𝑦𝐴
7 cbvrabw.4 . . . 4 𝑥𝜓
86, 7nfan 1900 . . 3 𝑥(𝑦𝐴𝜓)
9 eleq1w 2814 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
10 cbvrabw.5 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
119, 10anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
124, 8, 11cbvabw 2802 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
13 df-rab 3396 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
14 df-rab 3396 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
1512, 13, 143eqtr4i 2764 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  {cab 2709  wnfc 2879  {crab 3395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396
This theorem is referenced by:  elrabsf  3782  f1ossf1o  7056  tfis  7780  cantnflem1  9574  scottexs  9775  scott0s  9776  elmptrab  23737  bnj1534  34857  scottexf  38208  scott0f  38209  aks6d1c7lem3  42215  unitscyglem3  42230  unitscyglem4  42231  eq0rabdioph  42809  rexrabdioph  42827  rexfrabdioph  42828  elnn0rabdioph  42836  dvdsrabdioph  42843  binomcxplemdvsum  44388  fnlimcnv  45705  fnlimabslt  45717  stoweidlem34  46072  stoweidlem59  46097  pimltmnf2f  46735  pimgtpnf2f  46743  pimltpnf2f  46750  issmff  46772  smfpimltxrmptf  46796  smfpreimagtf  46806  smflim  46815  smfpimgtxr  46818  smfpimgtxrmptf  46822  smflim2  46844  smflimsup  46866  smfliminf  46869
  Copyright terms: Public domain W3C validator