MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabw Structured version   Visualization version   GIF version

Theorem cbvrabw 3432
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3437 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2142. (Revised by Wolf Lammen, 19-Jul-2025.)
Hypotheses
Ref Expression
cbvrabw.1 𝑥𝐴
cbvrabw.2 𝑦𝐴
cbvrabw.3 𝑦𝜑
cbvrabw.4 𝑥𝜓
cbvrabw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabw {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrabw
StepHypRef Expression
1 cbvrabw.2 . . . . 5 𝑦𝐴
21nfcri 2883 . . . 4 𝑦 𝑥𝐴
3 cbvrabw.3 . . . 4 𝑦𝜑
42, 3nfan 1899 . . 3 𝑦(𝑥𝐴𝜑)
5 cbvrabw.1 . . . . 5 𝑥𝐴
65nfcri 2883 . . . 4 𝑥 𝑦𝐴
7 cbvrabw.4 . . . 4 𝑥𝜓
86, 7nfan 1899 . . 3 𝑥(𝑦𝐴𝜓)
9 eleq1w 2811 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
10 cbvrabw.5 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
119, 10anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
124, 8, 11cbvabw 2800 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
13 df-rab 3397 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
14 df-rab 3397 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
1512, 13, 143eqtr4i 2762 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  {cab 2707  wnfc 2876  {crab 3396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3397
This theorem is referenced by:  elrabsf  3790  f1ossf1o  7066  tfis  7795  cantnflem1  9604  scottexs  9802  scott0s  9803  elmptrab  23731  bnj1534  34839  scottexf  38167  scott0f  38168  aks6d1c7lem3  42175  unitscyglem3  42190  unitscyglem4  42191  eq0rabdioph  42769  rexrabdioph  42787  rexfrabdioph  42788  elnn0rabdioph  42796  dvdsrabdioph  42803  binomcxplemdvsum  44348  fnlimcnv  45668  fnlimabslt  45680  stoweidlem34  46035  stoweidlem59  46060  pimltmnf2f  46698  pimgtpnf2f  46706  pimltpnf2f  46713  issmff  46735  smfpimltxrmptf  46759  smfpreimagtf  46769  smflim  46778  smfpimgtxr  46781  smfpimgtxrmptf  46785  smflim2  46807  smflimsup  46829  smfliminf  46832
  Copyright terms: Public domain W3C validator