![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrabw | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3487 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2141. (Revised by Wolf Lammen, 19-Jul-2025.) |
Ref | Expression |
---|---|
cbvrabw.1 | ⊢ Ⅎ𝑥𝐴 |
cbvrabw.2 | ⊢ Ⅎ𝑦𝐴 |
cbvrabw.3 | ⊢ Ⅎ𝑦𝜑 |
cbvrabw.4 | ⊢ Ⅎ𝑥𝜓 |
cbvrabw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrabw | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrabw.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
2 | 1 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
3 | cbvrabw.3 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | 2, 3 | nfan 1898 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
5 | cbvrabw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
6 | 5 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
7 | cbvrabw.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
8 | 6, 7 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓) |
9 | eleq1w 2827 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
10 | cbvrabw.5 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
11 | 9, 10 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
12 | 4, 8, 11 | cbvabw 2816 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
13 | df-rab 3444 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
14 | df-rab 3444 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | |
15 | 12, 13, 14 | 3eqtr4i 2778 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 {cab 2717 Ⅎwnfc 2893 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 |
This theorem is referenced by: elrabsf 3853 f1ossf1o 7162 tfis 7892 cantnflem1 9758 scottexs 9956 scott0s 9957 elmptrab 23856 bnj1534 34829 scottexf 38128 scott0f 38129 aks6d1c7lem3 42139 unitscyglem3 42154 unitscyglem4 42155 eq0rabdioph 42732 rexrabdioph 42750 rexfrabdioph 42751 elnn0rabdioph 42759 dvdsrabdioph 42766 binomcxplemdvsum 44324 fnlimcnv 45588 fnlimabslt 45600 stoweidlem34 45955 stoweidlem59 45980 pimltmnf2f 46618 pimgtpnf2f 46626 pimltpnf2f 46633 issmff 46655 smfpimltxrmptf 46679 smfpreimagtf 46689 smflim 46698 smfpimgtxr 46701 smfpimgtxrmptf 46705 smflim2 46727 smflimsup 46749 smfliminf 46752 |
Copyright terms: Public domain | W3C validator |