| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrabw | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3446 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) Avoid ax-10 2142. (Revised by Wolf Lammen, 19-Jul-2025.) |
| Ref | Expression |
|---|---|
| cbvrabw.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvrabw.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvrabw.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvrabw.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvrabw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrabw | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrabw.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 3 | cbvrabw.3 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 2, 3 | nfan 1899 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 5 | cbvrabw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 5 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 7 | cbvrabw.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 8 | 6, 7 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓) |
| 9 | eleq1w 2811 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | cbvrabw.5 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 11 | 9, 10 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
| 12 | 4, 8, 11 | cbvabw 2800 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} |
| 13 | df-rab 3406 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 14 | df-rab 3406 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜓} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜓)} | |
| 15 | 12, 13, 14 | 3eqtr4i 2762 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 {crab 3405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 |
| This theorem is referenced by: elrabsf 3799 f1ossf1o 7100 tfis 7831 cantnflem1 9642 scottexs 9840 scott0s 9841 elmptrab 23714 bnj1534 34843 scottexf 38162 scott0f 38163 aks6d1c7lem3 42170 unitscyglem3 42185 unitscyglem4 42186 eq0rabdioph 42764 rexrabdioph 42782 rexfrabdioph 42783 elnn0rabdioph 42791 dvdsrabdioph 42798 binomcxplemdvsum 44344 fnlimcnv 45665 fnlimabslt 45677 stoweidlem34 46032 stoweidlem59 46057 pimltmnf2f 46695 pimgtpnf2f 46703 pimltpnf2f 46710 issmff 46732 smfpimltxrmptf 46756 smfpreimagtf 46766 smflim 46775 smfpimgtxr 46778 smfpimgtxrmptf 46782 smflim2 46804 smflimsup 46826 smfliminf 46829 |
| Copyright terms: Public domain | W3C validator |