MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvrabw Structured version   Visualization version   GIF version

Theorem cbvrabw 3466
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab 3472 with a disjoint variable condition, which does not require ax-13 2366. (Contributed by Andrew Salmon, 11-Jul-2011.) Avoid ax-13 2366. (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvrabw.1 𝑥𝐴
cbvrabw.2 𝑦𝐴
cbvrabw.3 𝑦𝜑
cbvrabw.4 𝑥𝜓
cbvrabw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrabw {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvrabw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . . . 4 𝑧(𝑥𝐴𝜑)
2 cbvrabw.1 . . . . . 6 𝑥𝐴
32nfcri 2886 . . . . 5 𝑥 𝑧𝐴
4 nfs1v 2145 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfan 1894 . . . 4 𝑥(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
6 eleq1w 2812 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
7 sbequ12 2238 . . . . 5 (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑))
86, 7anbi12d 630 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)))
91, 5, 8cbvabw 2802 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)}
10 cbvrabw.2 . . . . . 6 𝑦𝐴
1110nfcri 2886 . . . . 5 𝑦 𝑧𝐴
12 cbvrabw.3 . . . . . 6 𝑦𝜑
1312nfsbv 2318 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1411, 13nfan 1894 . . . 4 𝑦(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
15 nfv 1909 . . . 4 𝑧(𝑦𝐴𝜓)
16 eleq1w 2812 . . . . 5 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
17 sbequ 2078 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
18 cbvrabw.4 . . . . . . 7 𝑥𝜓
19 cbvrabw.5 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜓))
2018, 19sbiev 2303 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
2117, 20bitrdi 286 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
2216, 21anbi12d 630 . . . 4 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
2314, 15, 22cbvabw 2802 . . 3 {𝑧 ∣ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
249, 23eqtri 2756 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦 ∣ (𝑦𝐴𝜓)}
25 df-rab 3431 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
26 df-rab 3431 . 2 {𝑦𝐴𝜓} = {𝑦 ∣ (𝑦𝐴𝜓)}
2724, 25, 263eqtr4i 2766 1 {𝑥𝐴𝜑} = {𝑦𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wnf 1777  [wsb 2059  wcel 2098  {cab 2705  wnfc 2879  {crab 3430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-rab 3431
This theorem is referenced by:  elrabsf  3827  f1ossf1o  7143  tfis  7865  cantnflem1  9720  scottexs  9918  scott0s  9919  elmptrab  23751  bnj1534  34517  scottexf  37674  scott0f  37675  aks6d1c7lem3  41686  eq0rabdioph  42227  rexrabdioph  42245  rexfrabdioph  42246  elnn0rabdioph  42254  dvdsrabdioph  42261  binomcxplemdvsum  43823  fnlimcnv  45084  fnlimabslt  45096  stoweidlem34  45451  stoweidlem59  45476  pimltmnf2f  46114  pimgtpnf2f  46122  pimltpnf2f  46129  issmff  46151  smfpimltxrmptf  46175  smfpreimagtf  46185  smflim  46194  smfpimgtxr  46197  smfpimgtxrmptf  46201  smflim2  46223  smflimsup  46245  smfliminf  46248
  Copyright terms: Public domain W3C validator