MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem10 Structured version   Visualization version   GIF version

Theorem divalglem10 16450
Description: Lemma for divalg 16451. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem10 ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟
Allowed substitution hints:   𝑆(𝑟,𝑞)

Proof of Theorem divalglem10
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divalglem8.1 . . . 4 𝑁 ∈ ℤ
2 divalglem8.2 . . . 4 𝐷 ∈ ℤ
3 divalglem8.3 . . . 4 𝐷 ≠ 0
4 divalglem8.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
5 eqid 2740 . . . 4 inf(𝑆, ℝ, < ) = inf(𝑆, ℝ, < )
61, 2, 3, 4, 5divalglem9 16449 . . 3 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
7 elnn0z 12652 . . . . . . . . . 10 (𝑥 ∈ ℕ0 ↔ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥))
87anbi2i 622 . . . . . . . . 9 ((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ↔ (𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥)))
9 an12 644 . . . . . . . . . 10 ((𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ ℤ ∧ (𝑥 < (abs‘𝐷) ∧ 0 ≤ 𝑥)))
10 ancom 460 . . . . . . . . . . 11 ((𝑥 < (abs‘𝐷) ∧ 0 ≤ 𝑥) ↔ (0 ≤ 𝑥𝑥 < (abs‘𝐷)))
1110anbi2i 622 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ (𝑥 < (abs‘𝐷) ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))))
129, 11bitri 275 . . . . . . . . 9 ((𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))))
138, 12bitri 275 . . . . . . . 8 ((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ↔ (𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))))
1413anbi1i 623 . . . . . . 7 (((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
15 anass 468 . . . . . . 7 (((𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (𝑥 ∈ ℤ ∧ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
1614, 15bitri 275 . . . . . 6 (((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (𝑥 ∈ ℤ ∧ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
17 oveq2 7456 . . . . . . . . . . 11 (𝑟 = 𝑥 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑥))
1817eqeq2d 2751 . . . . . . . . . 10 (𝑟 = 𝑥 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
1918rexbidv 3185 . . . . . . . . 9 (𝑟 = 𝑥 → (∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
201, 2, 3, 4divalglem4 16444 . . . . . . . . 9 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}
2119, 20elrab2 3711 . . . . . . . 8 (𝑥𝑆 ↔ (𝑥 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
2221anbi2i 622 . . . . . . 7 ((𝑥 < (abs‘𝐷) ∧ 𝑥𝑆) ↔ (𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
23 ancom 460 . . . . . . 7 ((𝑥𝑆𝑥 < (abs‘𝐷)) ↔ (𝑥 < (abs‘𝐷) ∧ 𝑥𝑆))
24 anass 468 . . . . . . 7 (((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
2522, 23, 243bitr4i 303 . . . . . 6 ((𝑥𝑆𝑥 < (abs‘𝐷)) ↔ ((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
26 df-3an 1089 . . . . . . . . 9 ((0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
2726rexbii 3100 . . . . . . . 8 (∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃𝑞 ∈ ℤ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
28 r19.42v 3197 . . . . . . . 8 (∃𝑞 ∈ ℤ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
2927, 28bitri 275 . . . . . . 7 (∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
3029anbi2i 622 . . . . . 6 ((𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))) ↔ (𝑥 ∈ ℤ ∧ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
3116, 25, 303bitr4i 303 . . . . 5 ((𝑥𝑆𝑥 < (abs‘𝐷)) ↔ (𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
3231eubii 2588 . . . 4 (∃!𝑥(𝑥𝑆𝑥 < (abs‘𝐷)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
33 df-reu 3389 . . . 4 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ ∃!𝑥(𝑥𝑆𝑥 < (abs‘𝐷)))
34 df-reu 3389 . . . 4 (∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
3532, 33, 343bitr4i 303 . . 3 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ ∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
366, 35mpbi 230 . 2 ∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))
37 breq2 5170 . . . . 5 (𝑥 = 𝑟 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑟))
38 breq1 5169 . . . . 5 (𝑥 = 𝑟 → (𝑥 < (abs‘𝐷) ↔ 𝑟 < (abs‘𝐷)))
39 oveq2 7456 . . . . . 6 (𝑥 = 𝑟 → ((𝑞 · 𝐷) + 𝑥) = ((𝑞 · 𝐷) + 𝑟))
4039eqeq2d 2751 . . . . 5 (𝑥 = 𝑟 → (𝑁 = ((𝑞 · 𝐷) + 𝑥) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
4137, 38, 403anbi123d 1436 . . . 4 (𝑥 = 𝑟 → ((0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
4241rexbidv 3185 . . 3 (𝑥 = 𝑟 → (∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
4342cbvreuvw 3412 . 2 (∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
4436, 43mpbi 230 1 ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1537  wcel 2108  ∃!weu 2571  wne 2946  wrex 3076  ∃!wreu 3386  {crab 3443   class class class wbr 5166  cfv 6573  (class class class)co 7448  infcinf 9510  cr 11183  0cc0 11184   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  0cn0 12553  cz 12639  abscabs 15283  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303
This theorem is referenced by:  divalg  16451
  Copyright terms: Public domain W3C validator