MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem10 Structured version   Visualization version   GIF version

Theorem divalglem10 15748
Description: Lemma for divalg 15749. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem10 ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟
Allowed substitution hints:   𝑆(𝑟,𝑞)

Proof of Theorem divalglem10
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divalglem8.1 . . . 4 𝑁 ∈ ℤ
2 divalglem8.2 . . . 4 𝐷 ∈ ℤ
3 divalglem8.3 . . . 4 𝐷 ≠ 0
4 divalglem8.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
5 eqid 2826 . . . 4 inf(𝑆, ℝ, < ) = inf(𝑆, ℝ, < )
61, 2, 3, 4, 5divalglem9 15747 . . 3 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
7 elnn0z 11988 . . . . . . . . . 10 (𝑥 ∈ ℕ0 ↔ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥))
87anbi2i 622 . . . . . . . . 9 ((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ↔ (𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥)))
9 an12 641 . . . . . . . . . 10 ((𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ ℤ ∧ (𝑥 < (abs‘𝐷) ∧ 0 ≤ 𝑥)))
10 ancom 461 . . . . . . . . . . 11 ((𝑥 < (abs‘𝐷) ∧ 0 ≤ 𝑥) ↔ (0 ≤ 𝑥𝑥 < (abs‘𝐷)))
1110anbi2i 622 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ (𝑥 < (abs‘𝐷) ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))))
129, 11bitri 276 . . . . . . . . 9 ((𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))))
138, 12bitri 276 . . . . . . . 8 ((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ↔ (𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))))
1413anbi1i 623 . . . . . . 7 (((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
15 anass 469 . . . . . . 7 (((𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (𝑥 ∈ ℤ ∧ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
1614, 15bitri 276 . . . . . 6 (((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (𝑥 ∈ ℤ ∧ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
17 oveq2 7158 . . . . . . . . . . 11 (𝑟 = 𝑥 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑥))
1817eqeq2d 2837 . . . . . . . . . 10 (𝑟 = 𝑥 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
1918rexbidv 3302 . . . . . . . . 9 (𝑟 = 𝑥 → (∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
201, 2, 3, 4divalglem4 15742 . . . . . . . . 9 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}
2119, 20elrab2 3687 . . . . . . . 8 (𝑥𝑆 ↔ (𝑥 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
2221anbi2i 622 . . . . . . 7 ((𝑥 < (abs‘𝐷) ∧ 𝑥𝑆) ↔ (𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
23 ancom 461 . . . . . . 7 ((𝑥𝑆𝑥 < (abs‘𝐷)) ↔ (𝑥 < (abs‘𝐷) ∧ 𝑥𝑆))
24 anass 469 . . . . . . 7 (((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
2522, 23, 243bitr4i 304 . . . . . 6 ((𝑥𝑆𝑥 < (abs‘𝐷)) ↔ ((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
26 df-3an 1083 . . . . . . . . 9 ((0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
2726rexbii 3252 . . . . . . . 8 (∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃𝑞 ∈ ℤ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
28 r19.42v 3355 . . . . . . . 8 (∃𝑞 ∈ ℤ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
2927, 28bitri 276 . . . . . . 7 (∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
3029anbi2i 622 . . . . . 6 ((𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))) ↔ (𝑥 ∈ ℤ ∧ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
3116, 25, 303bitr4i 304 . . . . 5 ((𝑥𝑆𝑥 < (abs‘𝐷)) ↔ (𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
3231eubii 2668 . . . 4 (∃!𝑥(𝑥𝑆𝑥 < (abs‘𝐷)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
33 df-reu 3150 . . . 4 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ ∃!𝑥(𝑥𝑆𝑥 < (abs‘𝐷)))
34 df-reu 3150 . . . 4 (∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
3532, 33, 343bitr4i 304 . . 3 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ ∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
366, 35mpbi 231 . 2 ∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))
37 breq2 5067 . . . . 5 (𝑥 = 𝑟 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑟))
38 breq1 5066 . . . . 5 (𝑥 = 𝑟 → (𝑥 < (abs‘𝐷) ↔ 𝑟 < (abs‘𝐷)))
39 oveq2 7158 . . . . . 6 (𝑥 = 𝑟 → ((𝑞 · 𝐷) + 𝑥) = ((𝑞 · 𝐷) + 𝑟))
4039eqeq2d 2837 . . . . 5 (𝑥 = 𝑟 → (𝑁 = ((𝑞 · 𝐷) + 𝑥) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
4137, 38, 403anbi123d 1429 . . . 4 (𝑥 = 𝑟 → ((0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
4241rexbidv 3302 . . 3 (𝑥 = 𝑟 → (∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
4342cbvreuvw 3457 . 2 (∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
4436, 43mpbi 231 1 ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1081   = wceq 1530  wcel 2107  ∃!weu 2651  wne 3021  wrex 3144  ∃!wreu 3145  {crab 3147   class class class wbr 5063  cfv 6354  (class class class)co 7150  infcinf 8899  cr 10530  0cc0 10531   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864  0cn0 11891  cz 11975  abscabs 14588  cdvds 15602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12385  df-fz 12888  df-seq 13365  df-exp 13425  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-dvds 15603
This theorem is referenced by:  divalg  15749
  Copyright terms: Public domain W3C validator