MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem10 Structured version   Visualization version   GIF version

Theorem divalglem10 15859
Description: Lemma for divalg 15860. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem10 ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟
Allowed substitution hints:   𝑆(𝑟,𝑞)

Proof of Theorem divalglem10
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divalglem8.1 . . . 4 𝑁 ∈ ℤ
2 divalglem8.2 . . . 4 𝐷 ∈ ℤ
3 divalglem8.3 . . . 4 𝐷 ≠ 0
4 divalglem8.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
5 eqid 2739 . . . 4 inf(𝑆, ℝ, < ) = inf(𝑆, ℝ, < )
61, 2, 3, 4, 5divalglem9 15858 . . 3 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
7 elnn0z 12087 . . . . . . . . . 10 (𝑥 ∈ ℕ0 ↔ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥))
87anbi2i 626 . . . . . . . . 9 ((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ↔ (𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥)))
9 an12 645 . . . . . . . . . 10 ((𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ ℤ ∧ (𝑥 < (abs‘𝐷) ∧ 0 ≤ 𝑥)))
10 ancom 464 . . . . . . . . . . 11 ((𝑥 < (abs‘𝐷) ∧ 0 ≤ 𝑥) ↔ (0 ≤ 𝑥𝑥 < (abs‘𝐷)))
1110anbi2i 626 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ (𝑥 < (abs‘𝐷) ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))))
129, 11bitri 278 . . . . . . . . 9 ((𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))))
138, 12bitri 278 . . . . . . . 8 ((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ↔ (𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))))
1413anbi1i 627 . . . . . . 7 (((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
15 anass 472 . . . . . . 7 (((𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (𝑥 ∈ ℤ ∧ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
1614, 15bitri 278 . . . . . 6 (((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (𝑥 ∈ ℤ ∧ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
17 oveq2 7190 . . . . . . . . . . 11 (𝑟 = 𝑥 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑥))
1817eqeq2d 2750 . . . . . . . . . 10 (𝑟 = 𝑥 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
1918rexbidv 3208 . . . . . . . . 9 (𝑟 = 𝑥 → (∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
201, 2, 3, 4divalglem4 15853 . . . . . . . . 9 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}
2119, 20elrab2 3596 . . . . . . . 8 (𝑥𝑆 ↔ (𝑥 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
2221anbi2i 626 . . . . . . 7 ((𝑥 < (abs‘𝐷) ∧ 𝑥𝑆) ↔ (𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
23 ancom 464 . . . . . . 7 ((𝑥𝑆𝑥 < (abs‘𝐷)) ↔ (𝑥 < (abs‘𝐷) ∧ 𝑥𝑆))
24 anass 472 . . . . . . 7 (((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
2522, 23, 243bitr4i 306 . . . . . 6 ((𝑥𝑆𝑥 < (abs‘𝐷)) ↔ ((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
26 df-3an 1090 . . . . . . . . 9 ((0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
2726rexbii 3162 . . . . . . . 8 (∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃𝑞 ∈ ℤ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
28 r19.42v 3255 . . . . . . . 8 (∃𝑞 ∈ ℤ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
2927, 28bitri 278 . . . . . . 7 (∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
3029anbi2i 626 . . . . . 6 ((𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))) ↔ (𝑥 ∈ ℤ ∧ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
3116, 25, 303bitr4i 306 . . . . 5 ((𝑥𝑆𝑥 < (abs‘𝐷)) ↔ (𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
3231eubii 2587 . . . 4 (∃!𝑥(𝑥𝑆𝑥 < (abs‘𝐷)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
33 df-reu 3061 . . . 4 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ ∃!𝑥(𝑥𝑆𝑥 < (abs‘𝐷)))
34 df-reu 3061 . . . 4 (∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
3532, 33, 343bitr4i 306 . . 3 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ ∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
366, 35mpbi 233 . 2 ∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))
37 breq2 5044 . . . . 5 (𝑥 = 𝑟 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑟))
38 breq1 5043 . . . . 5 (𝑥 = 𝑟 → (𝑥 < (abs‘𝐷) ↔ 𝑟 < (abs‘𝐷)))
39 oveq2 7190 . . . . . 6 (𝑥 = 𝑟 → ((𝑞 · 𝐷) + 𝑥) = ((𝑞 · 𝐷) + 𝑟))
4039eqeq2d 2750 . . . . 5 (𝑥 = 𝑟 → (𝑁 = ((𝑞 · 𝐷) + 𝑥) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
4137, 38, 403anbi123d 1437 . . . 4 (𝑥 = 𝑟 → ((0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
4241rexbidv 3208 . . 3 (𝑥 = 𝑟 → (∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
4342cbvreuvw 3353 . 2 (∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
4436, 43mpbi 233 1 ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wa 399  w3a 1088   = wceq 1542  wcel 2114  ∃!weu 2570  wne 2935  wrex 3055  ∃!wreu 3056  {crab 3058   class class class wbr 5040  cfv 6349  (class class class)co 7182  infcinf 8990  cr 10626  0cc0 10627   + caddc 10630   · cmul 10632   < clt 10765  cle 10766  cmin 10960  0cn0 11988  cz 12074  abscabs 14695  cdvds 15711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-sup 8991  df-inf 8992  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-div 11388  df-nn 11729  df-2 11791  df-3 11792  df-n0 11989  df-z 12075  df-uz 12337  df-rp 12485  df-fz 12994  df-seq 13473  df-exp 13534  df-cj 14560  df-re 14561  df-im 14562  df-sqrt 14696  df-abs 14697  df-dvds 15712
This theorem is referenced by:  divalg  15860
  Copyright terms: Public domain W3C validator