MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divalglem10 Structured version   Visualization version   GIF version

Theorem divalglem10 15741
Description: Lemma for divalg 15742. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by AV, 2-Oct-2020.)
Hypotheses
Ref Expression
divalglem8.1 𝑁 ∈ ℤ
divalglem8.2 𝐷 ∈ ℤ
divalglem8.3 𝐷 ≠ 0
divalglem8.4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
Assertion
Ref Expression
divalglem10 ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))
Distinct variable groups:   𝐷,𝑞,𝑟   𝑁,𝑞,𝑟
Allowed substitution hints:   𝑆(𝑟,𝑞)

Proof of Theorem divalglem10
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 divalglem8.1 . . . 4 𝑁 ∈ ℤ
2 divalglem8.2 . . . 4 𝐷 ∈ ℤ
3 divalglem8.3 . . . 4 𝐷 ≠ 0
4 divalglem8.4 . . . 4 𝑆 = {𝑟 ∈ ℕ0𝐷 ∥ (𝑁𝑟)}
5 eqid 2818 . . . 4 inf(𝑆, ℝ, < ) = inf(𝑆, ℝ, < )
61, 2, 3, 4, 5divalglem9 15740 . . 3 ∃!𝑥𝑆 𝑥 < (abs‘𝐷)
7 elnn0z 11982 . . . . . . . . . 10 (𝑥 ∈ ℕ0 ↔ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥))
87anbi2i 622 . . . . . . . . 9 ((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ↔ (𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥)))
9 an12 641 . . . . . . . . . 10 ((𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ ℤ ∧ (𝑥 < (abs‘𝐷) ∧ 0 ≤ 𝑥)))
10 ancom 461 . . . . . . . . . . 11 ((𝑥 < (abs‘𝐷) ∧ 0 ≤ 𝑥) ↔ (0 ≤ 𝑥𝑥 < (abs‘𝐷)))
1110anbi2i 622 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ (𝑥 < (abs‘𝐷) ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))))
129, 11bitri 276 . . . . . . . . 9 ((𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℤ ∧ 0 ≤ 𝑥)) ↔ (𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))))
138, 12bitri 276 . . . . . . . 8 ((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ↔ (𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))))
1413anbi1i 623 . . . . . . 7 (((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
15 anass 469 . . . . . . 7 (((𝑥 ∈ ℤ ∧ (0 ≤ 𝑥𝑥 < (abs‘𝐷))) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (𝑥 ∈ ℤ ∧ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
1614, 15bitri 276 . . . . . 6 (((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (𝑥 ∈ ℤ ∧ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
17 oveq2 7153 . . . . . . . . . . 11 (𝑟 = 𝑥 → ((𝑞 · 𝐷) + 𝑟) = ((𝑞 · 𝐷) + 𝑥))
1817eqeq2d 2829 . . . . . . . . . 10 (𝑟 = 𝑥 → (𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
1918rexbidv 3294 . . . . . . . . 9 (𝑟 = 𝑥 → (∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟) ↔ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
201, 2, 3, 4divalglem4 15735 . . . . . . . . 9 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)}
2119, 20elrab2 3680 . . . . . . . 8 (𝑥𝑆 ↔ (𝑥 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
2221anbi2i 622 . . . . . . 7 ((𝑥 < (abs‘𝐷) ∧ 𝑥𝑆) ↔ (𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
23 ancom 461 . . . . . . 7 ((𝑥𝑆𝑥 < (abs‘𝐷)) ↔ (𝑥 < (abs‘𝐷) ∧ 𝑥𝑆))
24 anass 469 . . . . . . 7 (((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (𝑥 < (abs‘𝐷) ∧ (𝑥 ∈ ℕ0 ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
2522, 23, 243bitr4i 304 . . . . . 6 ((𝑥𝑆𝑥 < (abs‘𝐷)) ↔ ((𝑥 < (abs‘𝐷) ∧ 𝑥 ∈ ℕ0) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
26 df-3an 1081 . . . . . . . . 9 ((0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
2726rexbii 3244 . . . . . . . 8 (∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃𝑞 ∈ ℤ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
28 r19.42v 3347 . . . . . . . 8 (∃𝑞 ∈ ℤ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
2927, 28bitri 276 . . . . . . 7 (∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
3029anbi2i 622 . . . . . 6 ((𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))) ↔ (𝑥 ∈ ℤ ∧ ((0 ≤ 𝑥𝑥 < (abs‘𝐷)) ∧ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
3116, 25, 303bitr4i 304 . . . . 5 ((𝑥𝑆𝑥 < (abs‘𝐷)) ↔ (𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
3231eubii 2663 . . . 4 (∃!𝑥(𝑥𝑆𝑥 < (abs‘𝐷)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
33 df-reu 3142 . . . 4 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ ∃!𝑥(𝑥𝑆𝑥 < (abs‘𝐷)))
34 df-reu 3142 . . . 4 (∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃!𝑥(𝑥 ∈ ℤ ∧ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))))
3532, 33, 343bitr4i 304 . . 3 (∃!𝑥𝑆 𝑥 < (abs‘𝐷) ↔ ∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)))
366, 35mpbi 231 . 2 ∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥))
37 breq2 5061 . . . . 5 (𝑥 = 𝑟 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑟))
38 breq1 5060 . . . . 5 (𝑥 = 𝑟 → (𝑥 < (abs‘𝐷) ↔ 𝑟 < (abs‘𝐷)))
39 oveq2 7153 . . . . . 6 (𝑥 = 𝑟 → ((𝑞 · 𝐷) + 𝑥) = ((𝑞 · 𝐷) + 𝑟))
4039eqeq2d 2829 . . . . 5 (𝑥 = 𝑟 → (𝑁 = ((𝑞 · 𝐷) + 𝑥) ↔ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
4137, 38, 403anbi123d 1427 . . . 4 (𝑥 = 𝑟 → ((0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
4241rexbidv 3294 . . 3 (𝑥 = 𝑟 → (∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))))
4342cbvreuvw 3449 . 2 (∃!𝑥 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑥𝑥 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑥)) ↔ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
4436, 43mpbi 231 1 ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1079   = wceq 1528  wcel 2105  ∃!weu 2646  wne 3013  wrex 3136  ∃!wreu 3137  {crab 3139   class class class wbr 5057  cfv 6348  (class class class)co 7145  infcinf 8893  cr 10524  0cc0 10525   + caddc 10528   · cmul 10530   < clt 10663  cle 10664  cmin 10858  0cn0 11885  cz 11969  abscabs 14581  cdvds 15595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596
This theorem is referenced by:  divalg  15742
  Copyright terms: Public domain W3C validator