Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpsmreu Structured version   Visualization version   GIF version

Theorem lshpsmreu 37571
Description: Lemma for lshpkrex 37580. Show uniqueness of ring multiplier 𝑘 when a vector 𝑋 is broken down into components, one in a hyperplane and the other outside of it . TODO: do we need the cbvrexv 3338 for 𝑎 to 𝑐? (Contributed by NM, 4-Jan-2015.)
Hypotheses
Ref Expression
lshpsmreu.v 𝑉 = (Base‘𝑊)
lshpsmreu.a + = (+g𝑊)
lshpsmreu.n 𝑁 = (LSpan‘𝑊)
lshpsmreu.p = (LSSum‘𝑊)
lshpsmreu.h 𝐻 = (LSHyp‘𝑊)
lshpsmreu.w (𝜑𝑊 ∈ LVec)
lshpsmreu.u (𝜑𝑈𝐻)
lshpsmreu.z (𝜑𝑍𝑉)
lshpsmreu.x (𝜑𝑋𝑉)
lshpsmreu.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpsmreu.d 𝐷 = (Scalar‘𝑊)
lshpsmreu.k 𝐾 = (Base‘𝐷)
lshpsmreu.t · = ( ·𝑠𝑊)
Assertion
Ref Expression
lshpsmreu (𝜑 → ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
Distinct variable groups:   𝑦,𝑘, +   𝑘,𝐾   · ,𝑘,𝑦   𝑈,𝑘,𝑦   𝑘,𝑋,𝑦   𝑘,𝑍,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐷(𝑦,𝑘)   (𝑦,𝑘)   𝐻(𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑦,𝑘)

Proof of Theorem lshpsmreu
Dummy variables 𝑎 𝑏 𝑐 𝑙 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpsmreu.x . . . . . . 7 (𝜑𝑋𝑉)
2 lshpsmreu.e . . . . . . 7 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
31, 2eleqtrrd 2841 . . . . . 6 (𝜑𝑋 ∈ (𝑈 (𝑁‘{𝑍})))
4 lshpsmreu.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
5 lveclmod 20567 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
7 eqid 2736 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
87lsssssubg 20419 . . . . . . . . 9 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
96, 8syl 17 . . . . . . . 8 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
10 lshpsmreu.h . . . . . . . . 9 𝐻 = (LSHyp‘𝑊)
11 lshpsmreu.u . . . . . . . . 9 (𝜑𝑈𝐻)
127, 10, 6, 11lshplss 37443 . . . . . . . 8 (𝜑𝑈 ∈ (LSubSp‘𝑊))
139, 12sseldd 3945 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝑊))
14 lshpsmreu.z . . . . . . . . 9 (𝜑𝑍𝑉)
15 lshpsmreu.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
16 lshpsmreu.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
1715, 7, 16lspsncl 20438 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
186, 14, 17syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
199, 18sseldd 3945 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
20 lshpsmreu.a . . . . . . . 8 + = (+g𝑊)
21 lshpsmreu.p . . . . . . . 8 = (LSSum‘𝑊)
2220, 21lsmelval 19431 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑋 ∈ (𝑈 (𝑁‘{𝑍})) ↔ ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧)))
2313, 19, 22syl2anc 584 . . . . . 6 (𝜑 → (𝑋 ∈ (𝑈 (𝑁‘{𝑍})) ↔ ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧)))
243, 23mpbid 231 . . . . 5 (𝜑 → ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧))
25 df-rex 3074 . . . . . . 7 (∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)))
26 lshpsmreu.d . . . . . . . . . . . . 13 𝐷 = (Scalar‘𝑊)
27 lshpsmreu.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐷)
28 lshpsmreu.t . . . . . . . . . . . . 13 · = ( ·𝑠𝑊)
2926, 27, 15, 28, 16lspsnel 20464 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑧 ∈ (𝑁‘{𝑍}) ↔ ∃𝑏𝐾 𝑧 = (𝑏 · 𝑍)))
306, 14, 29syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ (𝑁‘{𝑍}) ↔ ∃𝑏𝐾 𝑧 = (𝑏 · 𝑍)))
3130anbi1d 630 . . . . . . . . . 10 (𝜑 → ((𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ (∃𝑏𝐾 𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
32 r19.41v 3185 . . . . . . . . . 10 (∃𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ (∃𝑏𝐾 𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))
3331, 32bitr4di 288 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
3433exbidv 1924 . . . . . . . 8 (𝜑 → (∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
35 rexcom4 3271 . . . . . . . . 9 (∃𝑏𝐾𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))
36 ovex 7390 . . . . . . . . . . 11 (𝑏 · 𝑍) ∈ V
37 oveq2 7365 . . . . . . . . . . . 12 (𝑧 = (𝑏 · 𝑍) → (𝑐 + 𝑧) = (𝑐 + (𝑏 · 𝑍)))
3837eqeq2d 2747 . . . . . . . . . . 11 (𝑧 = (𝑏 · 𝑍) → (𝑋 = (𝑐 + 𝑧) ↔ 𝑋 = (𝑐 + (𝑏 · 𝑍))))
3936, 38ceqsexv 3494 . . . . . . . . . 10 (∃𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4039rexbii 3097 . . . . . . . . 9 (∃𝑏𝐾𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4135, 40bitr3i 276 . . . . . . . 8 (∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4234, 41bitrdi 286 . . . . . . 7 (𝜑 → (∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4325, 42bitrid 282 . . . . . 6 (𝜑 → (∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4443rexbidv 3175 . . . . 5 (𝜑 → (∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4524, 44mpbid 231 . . . 4 (𝜑 → ∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
46 rexcom 3273 . . . 4 (∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4745, 46sylib 217 . . 3 (𝜑 → ∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
48 oveq1 7364 . . . . . . . 8 (𝑐 = 𝑎 → (𝑐 + (𝑏 · 𝑍)) = (𝑎 + (𝑏 · 𝑍)))
4948eqeq2d 2747 . . . . . . 7 (𝑐 = 𝑎 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑎 + (𝑏 · 𝑍))))
5049cbvrexvw 3226 . . . . . 6 (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑎𝑈 𝑋 = (𝑎 + (𝑏 · 𝑍)))
51 eqid 2736 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
52 eqid 2736 . . . . . . . . . 10 (Cntz‘𝑊) = (Cntz‘𝑊)
53 simp11l 1284 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝜑)
5453, 13syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ∈ (SubGrp‘𝑊))
5553, 19syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
5615, 51, 16, 21, 10, 4, 11, 14, 2lshpdisj 37449 . . . . . . . . . . 11 (𝜑 → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
5753, 56syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
5853, 4syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ LVec)
5958, 5syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ LMod)
60 lmodabl 20369 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
6159, 60syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ Abel)
6252, 61, 54, 55ablcntzd 19635 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑍})))
63 simp12 1204 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑎𝑈)
64 simp2 1137 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑐𝑈)
65 simp1rl 1238 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → 𝑏𝐾)
66653ad2ant1 1133 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏𝐾)
6753, 14syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑍𝑉)
6815, 28, 26, 27, 16, 59, 66, 67lspsneli 20462 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑏 · 𝑍) ∈ (𝑁‘{𝑍}))
69 simp1rr 1239 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → 𝑙𝐾)
70693ad2ant1 1133 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑙𝐾)
7115, 28, 26, 27, 16, 59, 70, 67lspsneli 20462 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑙 · 𝑍) ∈ (𝑁‘{𝑍}))
72 simp13 1205 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑋 = (𝑎 + (𝑏 · 𝑍)))
73 simp3 1138 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑋 = (𝑐 + (𝑙 · 𝑍)))
7472, 73eqtr3d 2778 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑎 + (𝑏 · 𝑍)) = (𝑐 + (𝑙 · 𝑍)))
7520, 51, 52, 54, 55, 57, 62, 63, 64, 68, 71, 74subgdisj2 19474 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑏 · 𝑍) = (𝑙 · 𝑍))
7653, 11syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈𝐻)
7753, 2syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
7815, 16, 21, 10, 51, 59, 76, 67, 77lshpne0 37448 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑍 ≠ (0g𝑊))
7915, 28, 26, 27, 51, 58, 66, 70, 67, 78lvecvscan2 20573 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → ((𝑏 · 𝑍) = (𝑙 · 𝑍) ↔ 𝑏 = 𝑙))
8075, 79mpbid 231 . . . . . . . 8 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙)
8180rexlimdv3a 3156 . . . . . . 7 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙))
8281rexlimdv3a 3156 . . . . . 6 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → (∃𝑎𝑈 𝑋 = (𝑎 + (𝑏 · 𝑍)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙)))
8350, 82biimtrid 241 . . . . 5 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙)))
8483impd 411 . . . 4 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙))
8584ralrimivva 3197 . . 3 (𝜑 → ∀𝑏𝐾𝑙𝐾 ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙))
86 oveq1 7364 . . . . . . 7 (𝑏 = 𝑙 → (𝑏 · 𝑍) = (𝑙 · 𝑍))
8786oveq2d 7373 . . . . . 6 (𝑏 = 𝑙 → (𝑐 + (𝑏 · 𝑍)) = (𝑐 + (𝑙 · 𝑍)))
8887eqeq2d 2747 . . . . 5 (𝑏 = 𝑙 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑐 + (𝑙 · 𝑍))))
8988rexbidv 3175 . . . 4 (𝑏 = 𝑙 → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))))
9089reu4 3689 . . 3 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ (∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∀𝑏𝐾𝑙𝐾 ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙)))
9147, 85, 90sylanbrc 583 . 2 (𝜑 → ∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
92 oveq1 7364 . . . . . . 7 (𝑏 = 𝑘 → (𝑏 · 𝑍) = (𝑘 · 𝑍))
9392oveq2d 7373 . . . . . 6 (𝑏 = 𝑘 → (𝑐 + (𝑏 · 𝑍)) = (𝑐 + (𝑘 · 𝑍)))
9493eqeq2d 2747 . . . . 5 (𝑏 = 𝑘 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑐 + (𝑘 · 𝑍))))
9594rexbidv 3175 . . . 4 (𝑏 = 𝑘 → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍))))
9695cbvreuvw 3377 . . 3 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃!𝑘𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)))
97 oveq1 7364 . . . . . 6 (𝑐 = 𝑦 → (𝑐 + (𝑘 · 𝑍)) = (𝑦 + (𝑘 · 𝑍)))
9897eqeq2d 2747 . . . . 5 (𝑐 = 𝑦 → (𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍))))
9998cbvrexvw 3226 . . . 4 (∃𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10099reubii 3362 . . 3 (∃!𝑘𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10196, 100bitri 274 . 2 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10291, 101sylib 217 1 (𝜑 → ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  ∃!wreu 3351  cin 3909  wss 3910  {csn 4586  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  SubGrpcsubg 18922  Cntzccntz 19095  LSSumclsm 19416  Abelcabl 19563  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432  LVecclvec 20563  LSHypclsh 37437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lshyp 37439
This theorem is referenced by:  lshpkrlem1  37572  lshpkrlem2  37573  lshpkrlem3  37574  lshpkrcl  37578  dochfl1  39939
  Copyright terms: Public domain W3C validator