Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpsmreu Structured version   Visualization version   GIF version

Theorem lshpsmreu 39107
Description: Lemma for lshpkrex 39116. Show uniqueness of ring multiplier 𝑘 when a vector 𝑋 is broken down into components, one in a hyperplane and the other outside of it . TODO: do we need the cbvrexv 3330 for 𝑎 to 𝑐? (Contributed by NM, 4-Jan-2015.)
Hypotheses
Ref Expression
lshpsmreu.v 𝑉 = (Base‘𝑊)
lshpsmreu.a + = (+g𝑊)
lshpsmreu.n 𝑁 = (LSpan‘𝑊)
lshpsmreu.p = (LSSum‘𝑊)
lshpsmreu.h 𝐻 = (LSHyp‘𝑊)
lshpsmreu.w (𝜑𝑊 ∈ LVec)
lshpsmreu.u (𝜑𝑈𝐻)
lshpsmreu.z (𝜑𝑍𝑉)
lshpsmreu.x (𝜑𝑋𝑉)
lshpsmreu.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpsmreu.d 𝐷 = (Scalar‘𝑊)
lshpsmreu.k 𝐾 = (Base‘𝐷)
lshpsmreu.t · = ( ·𝑠𝑊)
Assertion
Ref Expression
lshpsmreu (𝜑 → ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
Distinct variable groups:   𝑦,𝑘, +   𝑘,𝐾   · ,𝑘,𝑦   𝑈,𝑘,𝑦   𝑘,𝑋,𝑦   𝑘,𝑍,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐷(𝑦,𝑘)   (𝑦,𝑘)   𝐻(𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑦,𝑘)

Proof of Theorem lshpsmreu
Dummy variables 𝑎 𝑏 𝑐 𝑙 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpsmreu.x . . . . . . 7 (𝜑𝑋𝑉)
2 lshpsmreu.e . . . . . . 7 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
31, 2eleqtrrd 2831 . . . . . 6 (𝜑𝑋 ∈ (𝑈 (𝑁‘{𝑍})))
4 lshpsmreu.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
5 lveclmod 21029 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
7 eqid 2729 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
87lsssssubg 20880 . . . . . . . . 9 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
96, 8syl 17 . . . . . . . 8 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
10 lshpsmreu.h . . . . . . . . 9 𝐻 = (LSHyp‘𝑊)
11 lshpsmreu.u . . . . . . . . 9 (𝜑𝑈𝐻)
127, 10, 6, 11lshplss 38979 . . . . . . . 8 (𝜑𝑈 ∈ (LSubSp‘𝑊))
139, 12sseldd 3938 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝑊))
14 lshpsmreu.z . . . . . . . . 9 (𝜑𝑍𝑉)
15 lshpsmreu.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
16 lshpsmreu.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
1715, 7, 16lspsncl 20899 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
186, 14, 17syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
199, 18sseldd 3938 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
20 lshpsmreu.a . . . . . . . 8 + = (+g𝑊)
21 lshpsmreu.p . . . . . . . 8 = (LSSum‘𝑊)
2220, 21lsmelval 19547 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑋 ∈ (𝑈 (𝑁‘{𝑍})) ↔ ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧)))
2313, 19, 22syl2anc 584 . . . . . 6 (𝜑 → (𝑋 ∈ (𝑈 (𝑁‘{𝑍})) ↔ ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧)))
243, 23mpbid 232 . . . . 5 (𝜑 → ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧))
25 df-rex 3054 . . . . . . 7 (∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)))
26 lshpsmreu.d . . . . . . . . . . . . 13 𝐷 = (Scalar‘𝑊)
27 lshpsmreu.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐷)
28 lshpsmreu.t . . . . . . . . . . . . 13 · = ( ·𝑠𝑊)
2926, 27, 15, 28, 16ellspsn 20925 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑧 ∈ (𝑁‘{𝑍}) ↔ ∃𝑏𝐾 𝑧 = (𝑏 · 𝑍)))
306, 14, 29syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ (𝑁‘{𝑍}) ↔ ∃𝑏𝐾 𝑧 = (𝑏 · 𝑍)))
3130anbi1d 631 . . . . . . . . . 10 (𝜑 → ((𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ (∃𝑏𝐾 𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
32 r19.41v 3159 . . . . . . . . . 10 (∃𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ (∃𝑏𝐾 𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))
3331, 32bitr4di 289 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
3433exbidv 1921 . . . . . . . 8 (𝜑 → (∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
35 rexcom4 3256 . . . . . . . . 9 (∃𝑏𝐾𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))
36 ovex 7386 . . . . . . . . . . 11 (𝑏 · 𝑍) ∈ V
37 oveq2 7361 . . . . . . . . . . . 12 (𝑧 = (𝑏 · 𝑍) → (𝑐 + 𝑧) = (𝑐 + (𝑏 · 𝑍)))
3837eqeq2d 2740 . . . . . . . . . . 11 (𝑧 = (𝑏 · 𝑍) → (𝑋 = (𝑐 + 𝑧) ↔ 𝑋 = (𝑐 + (𝑏 · 𝑍))))
3936, 38ceqsexv 3489 . . . . . . . . . 10 (∃𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4039rexbii 3076 . . . . . . . . 9 (∃𝑏𝐾𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4135, 40bitr3i 277 . . . . . . . 8 (∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4234, 41bitrdi 287 . . . . . . 7 (𝜑 → (∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4325, 42bitrid 283 . . . . . 6 (𝜑 → (∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4443rexbidv 3153 . . . . 5 (𝜑 → (∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4524, 44mpbid 232 . . . 4 (𝜑 → ∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
46 rexcom 3258 . . . 4 (∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4745, 46sylib 218 . . 3 (𝜑 → ∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
48 oveq1 7360 . . . . . . . 8 (𝑐 = 𝑎 → (𝑐 + (𝑏 · 𝑍)) = (𝑎 + (𝑏 · 𝑍)))
4948eqeq2d 2740 . . . . . . 7 (𝑐 = 𝑎 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑎 + (𝑏 · 𝑍))))
5049cbvrexvw 3208 . . . . . 6 (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑎𝑈 𝑋 = (𝑎 + (𝑏 · 𝑍)))
51 eqid 2729 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
52 eqid 2729 . . . . . . . . . 10 (Cntz‘𝑊) = (Cntz‘𝑊)
53 simp11l 1285 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝜑)
5453, 13syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ∈ (SubGrp‘𝑊))
5553, 19syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
5615, 51, 16, 21, 10, 4, 11, 14, 2lshpdisj 38985 . . . . . . . . . . 11 (𝜑 → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
5753, 56syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
5853, 4syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ LVec)
5958, 5syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ LMod)
60 lmodabl 20831 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
6159, 60syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ Abel)
6252, 61, 54, 55ablcntzd 19755 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑍})))
63 simp12 1205 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑎𝑈)
64 simp2 1137 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑐𝑈)
65 simp1rl 1239 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → 𝑏𝐾)
66653ad2ant1 1133 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏𝐾)
6753, 14syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑍𝑉)
6815, 28, 26, 27, 16, 59, 66, 67ellspsni 20923 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑏 · 𝑍) ∈ (𝑁‘{𝑍}))
69 simp1rr 1240 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → 𝑙𝐾)
70693ad2ant1 1133 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑙𝐾)
7115, 28, 26, 27, 16, 59, 70, 67ellspsni 20923 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑙 · 𝑍) ∈ (𝑁‘{𝑍}))
72 simp13 1206 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑋 = (𝑎 + (𝑏 · 𝑍)))
73 simp3 1138 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑋 = (𝑐 + (𝑙 · 𝑍)))
7472, 73eqtr3d 2766 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑎 + (𝑏 · 𝑍)) = (𝑐 + (𝑙 · 𝑍)))
7520, 51, 52, 54, 55, 57, 62, 63, 64, 68, 71, 74subgdisj2 19590 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑏 · 𝑍) = (𝑙 · 𝑍))
7653, 11syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈𝐻)
7753, 2syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
7815, 16, 21, 10, 51, 59, 76, 67, 77lshpne0 38984 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑍 ≠ (0g𝑊))
7915, 28, 26, 27, 51, 58, 66, 70, 67, 78lvecvscan2 21038 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → ((𝑏 · 𝑍) = (𝑙 · 𝑍) ↔ 𝑏 = 𝑙))
8075, 79mpbid 232 . . . . . . . 8 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙)
8180rexlimdv3a 3134 . . . . . . 7 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙))
8281rexlimdv3a 3134 . . . . . 6 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → (∃𝑎𝑈 𝑋 = (𝑎 + (𝑏 · 𝑍)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙)))
8350, 82biimtrid 242 . . . . 5 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙)))
8483impd 410 . . . 4 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙))
8584ralrimivva 3172 . . 3 (𝜑 → ∀𝑏𝐾𝑙𝐾 ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙))
86 oveq1 7360 . . . . . . 7 (𝑏 = 𝑙 → (𝑏 · 𝑍) = (𝑙 · 𝑍))
8786oveq2d 7369 . . . . . 6 (𝑏 = 𝑙 → (𝑐 + (𝑏 · 𝑍)) = (𝑐 + (𝑙 · 𝑍)))
8887eqeq2d 2740 . . . . 5 (𝑏 = 𝑙 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑐 + (𝑙 · 𝑍))))
8988rexbidv 3153 . . . 4 (𝑏 = 𝑙 → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))))
9089reu4 3693 . . 3 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ (∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∀𝑏𝐾𝑙𝐾 ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙)))
9147, 85, 90sylanbrc 583 . 2 (𝜑 → ∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
92 oveq1 7360 . . . . . . 7 (𝑏 = 𝑘 → (𝑏 · 𝑍) = (𝑘 · 𝑍))
9392oveq2d 7369 . . . . . 6 (𝑏 = 𝑘 → (𝑐 + (𝑏 · 𝑍)) = (𝑐 + (𝑘 · 𝑍)))
9493eqeq2d 2740 . . . . 5 (𝑏 = 𝑘 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑐 + (𝑘 · 𝑍))))
9594rexbidv 3153 . . . 4 (𝑏 = 𝑘 → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍))))
9695cbvreuvw 3369 . . 3 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃!𝑘𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)))
97 oveq1 7360 . . . . . 6 (𝑐 = 𝑦 → (𝑐 + (𝑘 · 𝑍)) = (𝑦 + (𝑘 · 𝑍)))
9897eqeq2d 2740 . . . . 5 (𝑐 = 𝑦 → (𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍))))
9998cbvrexvw 3208 . . . 4 (∃𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10099reubii 3354 . . 3 (∃!𝑘𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10196, 100bitri 275 . 2 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10291, 101sylib 218 1 (𝜑 → ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3343  cin 3904  wss 3905  {csn 4579  cfv 6486  (class class class)co 7353  Basecbs 17139  +gcplusg 17180  Scalarcsca 17183   ·𝑠 cvsca 17184  0gc0g 17362  SubGrpcsubg 19018  Cntzccntz 19213  LSSumclsm 19532  Abelcabl 19679  LModclmod 20782  LSubSpclss 20853  LSpanclspn 20893  LVecclvec 21025  LSHypclsh 38973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-subg 19021  df-cntz 19215  df-lsm 19534  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-drng 20635  df-lmod 20784  df-lss 20854  df-lsp 20894  df-lvec 21026  df-lshyp 38975
This theorem is referenced by:  lshpkrlem1  39108  lshpkrlem2  39109  lshpkrlem3  39110  lshpkrcl  39114  dochfl1  41475
  Copyright terms: Public domain W3C validator