Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpsmreu Structured version   Visualization version   GIF version

Theorem lshpsmreu 35726
Description: Lemma for lshpkrex 35735. Show uniqueness of ring multiplier 𝑘 when a vector 𝑋 is broken down into components, one in a hyperplane and the other outside of it . TODO: do we need the cbvrexv 3401 for 𝑎 to 𝑐? (Contributed by NM, 4-Jan-2015.)
Hypotheses
Ref Expression
lshpsmreu.v 𝑉 = (Base‘𝑊)
lshpsmreu.a + = (+g𝑊)
lshpsmreu.n 𝑁 = (LSpan‘𝑊)
lshpsmreu.p = (LSSum‘𝑊)
lshpsmreu.h 𝐻 = (LSHyp‘𝑊)
lshpsmreu.w (𝜑𝑊 ∈ LVec)
lshpsmreu.u (𝜑𝑈𝐻)
lshpsmreu.z (𝜑𝑍𝑉)
lshpsmreu.x (𝜑𝑋𝑉)
lshpsmreu.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpsmreu.d 𝐷 = (Scalar‘𝑊)
lshpsmreu.k 𝐾 = (Base‘𝐷)
lshpsmreu.t · = ( ·𝑠𝑊)
Assertion
Ref Expression
lshpsmreu (𝜑 → ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
Distinct variable groups:   𝑦,𝑘, +   𝑘,𝐾   · ,𝑘,𝑦   𝑈,𝑘,𝑦   𝑘,𝑋,𝑦   𝑘,𝑍,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐷(𝑦,𝑘)   (𝑦,𝑘)   𝐻(𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑦,𝑘)

Proof of Theorem lshpsmreu
Dummy variables 𝑎 𝑏 𝑐 𝑙 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpsmreu.x . . . . . . 7 (𝜑𝑋𝑉)
2 lshpsmreu.e . . . . . . 7 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
31, 2eleqtrrd 2884 . . . . . 6 (𝜑𝑋 ∈ (𝑈 (𝑁‘{𝑍})))
4 lshpsmreu.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
5 lveclmod 19556 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
7 eqid 2793 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
87lsssssubg 19408 . . . . . . . . 9 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
96, 8syl 17 . . . . . . . 8 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
10 lshpsmreu.h . . . . . . . . 9 𝐻 = (LSHyp‘𝑊)
11 lshpsmreu.u . . . . . . . . 9 (𝜑𝑈𝐻)
127, 10, 6, 11lshplss 35598 . . . . . . . 8 (𝜑𝑈 ∈ (LSubSp‘𝑊))
139, 12sseldd 3885 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝑊))
14 lshpsmreu.z . . . . . . . . 9 (𝜑𝑍𝑉)
15 lshpsmreu.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
16 lshpsmreu.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
1715, 7, 16lspsncl 19427 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
186, 14, 17syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
199, 18sseldd 3885 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
20 lshpsmreu.a . . . . . . . 8 + = (+g𝑊)
21 lshpsmreu.p . . . . . . . 8 = (LSSum‘𝑊)
2220, 21lsmelval 18492 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑋 ∈ (𝑈 (𝑁‘{𝑍})) ↔ ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧)))
2313, 19, 22syl2anc 584 . . . . . 6 (𝜑 → (𝑋 ∈ (𝑈 (𝑁‘{𝑍})) ↔ ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧)))
243, 23mpbid 233 . . . . 5 (𝜑 → ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧))
25 df-rex 3109 . . . . . . 7 (∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)))
26 lshpsmreu.d . . . . . . . . . . . . 13 𝐷 = (Scalar‘𝑊)
27 lshpsmreu.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐷)
28 lshpsmreu.t . . . . . . . . . . . . 13 · = ( ·𝑠𝑊)
2926, 27, 15, 28, 16lspsnel 19453 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑧 ∈ (𝑁‘{𝑍}) ↔ ∃𝑏𝐾 𝑧 = (𝑏 · 𝑍)))
306, 14, 29syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ (𝑁‘{𝑍}) ↔ ∃𝑏𝐾 𝑧 = (𝑏 · 𝑍)))
3130anbi1d 629 . . . . . . . . . 10 (𝜑 → ((𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ (∃𝑏𝐾 𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
32 r19.41v 3305 . . . . . . . . . 10 (∃𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ (∃𝑏𝐾 𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))
3331, 32syl6bbr 290 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
3433exbidv 1897 . . . . . . . 8 (𝜑 → (∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
35 rexcom4 3211 . . . . . . . . 9 (∃𝑏𝐾𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))
36 ovex 7039 . . . . . . . . . . 11 (𝑏 · 𝑍) ∈ V
37 oveq2 7015 . . . . . . . . . . . 12 (𝑧 = (𝑏 · 𝑍) → (𝑐 + 𝑧) = (𝑐 + (𝑏 · 𝑍)))
3837eqeq2d 2803 . . . . . . . . . . 11 (𝑧 = (𝑏 · 𝑍) → (𝑋 = (𝑐 + 𝑧) ↔ 𝑋 = (𝑐 + (𝑏 · 𝑍))))
3936, 38ceqsexv 3479 . . . . . . . . . 10 (∃𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4039rexbii 3209 . . . . . . . . 9 (∃𝑏𝐾𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4135, 40bitr3i 278 . . . . . . . 8 (∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4234, 41syl6bb 288 . . . . . . 7 (𝜑 → (∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4325, 42syl5bb 284 . . . . . 6 (𝜑 → (∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4443rexbidv 3257 . . . . 5 (𝜑 → (∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4524, 44mpbid 233 . . . 4 (𝜑 → ∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
46 rexcom 3313 . . . 4 (∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4745, 46sylib 219 . . 3 (𝜑 → ∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
48 oveq1 7014 . . . . . . . 8 (𝑐 = 𝑎 → (𝑐 + (𝑏 · 𝑍)) = (𝑎 + (𝑏 · 𝑍)))
4948eqeq2d 2803 . . . . . . 7 (𝑐 = 𝑎 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑎 + (𝑏 · 𝑍))))
5049cbvrexv 3401 . . . . . 6 (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑎𝑈 𝑋 = (𝑎 + (𝑏 · 𝑍)))
51 eqid 2793 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
52 eqid 2793 . . . . . . . . . 10 (Cntz‘𝑊) = (Cntz‘𝑊)
53 simp11l 1275 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝜑)
5453, 13syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ∈ (SubGrp‘𝑊))
5553, 19syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
5615, 51, 16, 21, 10, 4, 11, 14, 2lshpdisj 35604 . . . . . . . . . . 11 (𝜑 → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
5753, 56syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
5853, 4syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ LVec)
5958, 5syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ LMod)
60 lmodabl 19359 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
6159, 60syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ Abel)
6252, 61, 54, 55ablcntzd 18688 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑍})))
63 simp12 1195 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑎𝑈)
64 simp2 1128 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑐𝑈)
65 simp1rl 1229 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → 𝑏𝐾)
66653ad2ant1 1124 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏𝐾)
6753, 14syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑍𝑉)
6815, 28, 26, 27, 16, 59, 66, 67lspsneli 19451 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑏 · 𝑍) ∈ (𝑁‘{𝑍}))
69 simp1rr 1230 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → 𝑙𝐾)
70693ad2ant1 1124 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑙𝐾)
7115, 28, 26, 27, 16, 59, 70, 67lspsneli 19451 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑙 · 𝑍) ∈ (𝑁‘{𝑍}))
72 simp13 1196 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑋 = (𝑎 + (𝑏 · 𝑍)))
73 simp3 1129 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑋 = (𝑐 + (𝑙 · 𝑍)))
7472, 73eqtr3d 2831 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑎 + (𝑏 · 𝑍)) = (𝑐 + (𝑙 · 𝑍)))
7520, 51, 52, 54, 55, 57, 62, 63, 64, 68, 71, 74subgdisj2 18533 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑏 · 𝑍) = (𝑙 · 𝑍))
7653, 11syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈𝐻)
7753, 2syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
7815, 16, 21, 10, 51, 59, 76, 67, 77lshpne0 35603 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑍 ≠ (0g𝑊))
7915, 28, 26, 27, 51, 58, 66, 70, 67, 78lvecvscan2 19562 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → ((𝑏 · 𝑍) = (𝑙 · 𝑍) ↔ 𝑏 = 𝑙))
8075, 79mpbid 233 . . . . . . . 8 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙)
8180rexlimdv3a 3246 . . . . . . 7 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙))
8281rexlimdv3a 3246 . . . . . 6 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → (∃𝑎𝑈 𝑋 = (𝑎 + (𝑏 · 𝑍)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙)))
8350, 82syl5bi 243 . . . . 5 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙)))
8483impd 411 . . . 4 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙))
8584ralrimivva 3156 . . 3 (𝜑 → ∀𝑏𝐾𝑙𝐾 ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙))
86 oveq1 7014 . . . . . . 7 (𝑏 = 𝑙 → (𝑏 · 𝑍) = (𝑙 · 𝑍))
8786oveq2d 7023 . . . . . 6 (𝑏 = 𝑙 → (𝑐 + (𝑏 · 𝑍)) = (𝑐 + (𝑙 · 𝑍)))
8887eqeq2d 2803 . . . . 5 (𝑏 = 𝑙 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑐 + (𝑙 · 𝑍))))
8988rexbidv 3257 . . . 4 (𝑏 = 𝑙 → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))))
9089reu4 3651 . . 3 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ (∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∀𝑏𝐾𝑙𝐾 ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙)))
9147, 85, 90sylanbrc 583 . 2 (𝜑 → ∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
92 oveq1 7014 . . . . . . 7 (𝑏 = 𝑘 → (𝑏 · 𝑍) = (𝑘 · 𝑍))
9392oveq2d 7023 . . . . . 6 (𝑏 = 𝑘 → (𝑐 + (𝑏 · 𝑍)) = (𝑐 + (𝑘 · 𝑍)))
9493eqeq2d 2803 . . . . 5 (𝑏 = 𝑘 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑐 + (𝑘 · 𝑍))))
9594rexbidv 3257 . . . 4 (𝑏 = 𝑘 → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍))))
9695cbvreuv 3402 . . 3 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃!𝑘𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)))
97 oveq1 7014 . . . . . 6 (𝑐 = 𝑦 → (𝑐 + (𝑘 · 𝑍)) = (𝑦 + (𝑘 · 𝑍)))
9897eqeq2d 2803 . . . . 5 (𝑐 = 𝑦 → (𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍))))
9998cbvrexv 3401 . . . 4 (∃𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10099reubii 3348 . . 3 (∃!𝑘𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10196, 100bitri 276 . 2 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10291, 101sylib 219 1 (𝜑 → ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1078   = wceq 1520  wex 1759  wcel 2079  wral 3103  wrex 3104  ∃!wreu 3105  cin 3853  wss 3854  {csn 4466  cfv 6217  (class class class)co 7007  Basecbs 16300  +gcplusg 16382  Scalarcsca 16385   ·𝑠 cvsca 16386  0gc0g 16530  SubGrpcsubg 18015  Cntzccntz 18174  LSSumclsm 18477  Abelcabl 18622  LModclmod 19312  LSubSpclss 19381  LSpanclspn 19421  LVecclvec 19552  LSHypclsh 35592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-tpos 7734  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-er 8130  df-en 8348  df-dom 8349  df-sdom 8350  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-nn 11476  df-2 11537  df-3 11538  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-0g 16532  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-submnd 17763  df-grp 17852  df-minusg 17853  df-sbg 17854  df-subg 18018  df-cntz 18176  df-lsm 18479  df-cmn 18623  df-abl 18624  df-mgp 18918  df-ur 18930  df-ring 18977  df-oppr 19051  df-dvdsr 19069  df-unit 19070  df-invr 19100  df-drng 19182  df-lmod 19314  df-lss 19382  df-lsp 19422  df-lvec 19553  df-lshyp 35594
This theorem is referenced by:  lshpkrlem1  35727  lshpkrlem2  35728  lshpkrlem3  35729  lshpkrcl  35733  dochfl1  38093
  Copyright terms: Public domain W3C validator