| Step | Hyp | Ref
| Expression |
| 1 | | lshpsmreu.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 2 | | lshpsmreu.e |
. . . . . . 7
⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
| 3 | 1, 2 | eleqtrrd 2838 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝑈 ⊕ (𝑁‘{𝑍}))) |
| 4 | | lshpsmreu.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ LVec) |
| 5 | | lveclmod 21069 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 7 | | eqid 2736 |
. . . . . . . . . 10
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
| 8 | 7 | lsssssubg 20920 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod →
(LSubSp‘𝑊) ⊆
(SubGrp‘𝑊)) |
| 9 | 6, 8 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 10 | | lshpsmreu.h |
. . . . . . . . 9
⊢ 𝐻 = (LSHyp‘𝑊) |
| 11 | | lshpsmreu.u |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ 𝐻) |
| 12 | 7, 10, 6, 11 | lshplss 39004 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑊)) |
| 13 | 9, 12 | sseldd 3964 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 14 | | lshpsmreu.z |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 15 | | lshpsmreu.v |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑊) |
| 16 | | lshpsmreu.n |
. . . . . . . . . 10
⊢ 𝑁 = (LSpan‘𝑊) |
| 17 | 15, 7, 16 | lspsncl 20939 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) |
| 18 | 6, 14, 17 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) |
| 19 | 9, 18 | sseldd 3964 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) |
| 20 | | lshpsmreu.a |
. . . . . . . 8
⊢ + =
(+g‘𝑊) |
| 21 | | lshpsmreu.p |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝑊) |
| 22 | 20, 21 | lsmelval 19635 |
. . . . . . 7
⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑋 ∈ (𝑈 ⊕ (𝑁‘{𝑍})) ↔ ∃𝑐 ∈ 𝑈 ∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧))) |
| 23 | 13, 19, 22 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∈ (𝑈 ⊕ (𝑁‘{𝑍})) ↔ ∃𝑐 ∈ 𝑈 ∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧))) |
| 24 | 3, 23 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ∃𝑐 ∈ 𝑈 ∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧)) |
| 25 | | df-rex 3062 |
. . . . . . 7
⊢
(∃𝑧 ∈
(𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧))) |
| 26 | | lshpsmreu.d |
. . . . . . . . . . . . 13
⊢ 𝐷 = (Scalar‘𝑊) |
| 27 | | lshpsmreu.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = (Base‘𝐷) |
| 28 | | lshpsmreu.t |
. . . . . . . . . . . . 13
⊢ · = (
·𝑠 ‘𝑊) |
| 29 | 26, 27, 15, 28, 16 | ellspsn 20965 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉) → (𝑧 ∈ (𝑁‘{𝑍}) ↔ ∃𝑏 ∈ 𝐾 𝑧 = (𝑏 · 𝑍))) |
| 30 | 6, 14, 29 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑧 ∈ (𝑁‘{𝑍}) ↔ ∃𝑏 ∈ 𝐾 𝑧 = (𝑏 · 𝑍))) |
| 31 | 30 | anbi1d 631 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ (∃𝑏 ∈ 𝐾 𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))) |
| 32 | | r19.41v 3175 |
. . . . . . . . . 10
⊢
(∃𝑏 ∈
𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ (∃𝑏 ∈ 𝐾 𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))) |
| 33 | 31, 32 | bitr4di 289 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏 ∈ 𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))) |
| 34 | 33 | exbidv 1921 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑧∃𝑏 ∈ 𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))) |
| 35 | | rexcom4 3273 |
. . . . . . . . 9
⊢
(∃𝑏 ∈
𝐾 ∃𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑧∃𝑏 ∈ 𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))) |
| 36 | | ovex 7443 |
. . . . . . . . . . 11
⊢ (𝑏 · 𝑍) ∈ V |
| 37 | | oveq2 7418 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑏 · 𝑍) → (𝑐 + 𝑧) = (𝑐 + (𝑏 · 𝑍))) |
| 38 | 37 | eqeq2d 2747 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑏 · 𝑍) → (𝑋 = (𝑐 + 𝑧) ↔ 𝑋 = (𝑐 + (𝑏 · 𝑍)))) |
| 39 | 36, 38 | ceqsexv 3516 |
. . . . . . . . . 10
⊢
(∃𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ 𝑋 = (𝑐 + (𝑏 · 𝑍))) |
| 40 | 39 | rexbii 3084 |
. . . . . . . . 9
⊢
(∃𝑏 ∈
𝐾 ∃𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏 ∈ 𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))) |
| 41 | 35, 40 | bitr3i 277 |
. . . . . . . 8
⊢
(∃𝑧∃𝑏 ∈ 𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏 ∈ 𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))) |
| 42 | 34, 41 | bitrdi 287 |
. . . . . . 7
⊢ (𝜑 → (∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏 ∈ 𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))) |
| 43 | 25, 42 | bitrid 283 |
. . . . . 6
⊢ (𝜑 → (∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑏 ∈ 𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))) |
| 44 | 43 | rexbidv 3165 |
. . . . 5
⊢ (𝜑 → (∃𝑐 ∈ 𝑈 ∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑐 ∈ 𝑈 ∃𝑏 ∈ 𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))) |
| 45 | 24, 44 | mpbid 232 |
. . . 4
⊢ (𝜑 → ∃𝑐 ∈ 𝑈 ∃𝑏 ∈ 𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))) |
| 46 | | rexcom 3275 |
. . . 4
⊢
(∃𝑐 ∈
𝑈 ∃𝑏 ∈ 𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑏 ∈ 𝐾 ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍))) |
| 47 | 45, 46 | sylib 218 |
. . 3
⊢ (𝜑 → ∃𝑏 ∈ 𝐾 ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍))) |
| 48 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑐 = 𝑎 → (𝑐 + (𝑏 · 𝑍)) = (𝑎 + (𝑏 · 𝑍))) |
| 49 | 48 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑐 = 𝑎 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑎 + (𝑏 · 𝑍)))) |
| 50 | 49 | cbvrexvw 3225 |
. . . . . 6
⊢
(∃𝑐 ∈
𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑎 ∈ 𝑈 𝑋 = (𝑎 + (𝑏 · 𝑍))) |
| 51 | | eqid 2736 |
. . . . . . . . . 10
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 52 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Cntz‘𝑊) =
(Cntz‘𝑊) |
| 53 | | simp11l 1285 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝜑) |
| 54 | 53, 13 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 55 | 53, 19 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) |
| 56 | 15, 51, 16, 21, 10, 4, 11, 14, 2 | lshpdisj 39010 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g‘𝑊)}) |
| 57 | 53, 56 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g‘𝑊)}) |
| 58 | 53, 4 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ LVec) |
| 59 | 58, 5 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ LMod) |
| 60 | | lmodabl 20871 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
| 61 | 59, 60 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ Abel) |
| 62 | 52, 61, 54, 55 | ablcntzd 19843 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑍}))) |
| 63 | | simp12 1205 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑎 ∈ 𝑈) |
| 64 | | simp2 1137 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑐 ∈ 𝑈) |
| 65 | | simp1rl 1239 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) → 𝑏 ∈ 𝐾) |
| 66 | 65 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 ∈ 𝐾) |
| 67 | 53, 14 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑍 ∈ 𝑉) |
| 68 | 15, 28, 26, 27, 16, 59, 66, 67 | ellspsni 20963 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑏 · 𝑍) ∈ (𝑁‘{𝑍})) |
| 69 | | simp1rr 1240 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) → 𝑙 ∈ 𝐾) |
| 70 | 69 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑙 ∈ 𝐾) |
| 71 | 15, 28, 26, 27, 16, 59, 70, 67 | ellspsni 20963 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑙 · 𝑍) ∈ (𝑁‘{𝑍})) |
| 72 | | simp13 1206 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑋 = (𝑎 + (𝑏 · 𝑍))) |
| 73 | | simp3 1138 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑋 = (𝑐 + (𝑙 · 𝑍))) |
| 74 | 72, 73 | eqtr3d 2773 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑎 + (𝑏 · 𝑍)) = (𝑐 + (𝑙 · 𝑍))) |
| 75 | 20, 51, 52, 54, 55, 57, 62, 63, 64, 68, 71, 74 | subgdisj2 19678 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑏 · 𝑍) = (𝑙 · 𝑍)) |
| 76 | 53, 11 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ∈ 𝐻) |
| 77 | 53, 2 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
| 78 | 15, 16, 21, 10, 51, 59, 76, 67, 77 | lshpne0 39009 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑍 ≠ (0g‘𝑊)) |
| 79 | 15, 28, 26, 27, 51, 58, 66, 70, 67, 78 | lvecvscan2 21078 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → ((𝑏 · 𝑍) = (𝑙 · 𝑍) ↔ 𝑏 = 𝑙)) |
| 80 | 75, 79 | mpbid 232 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐 ∈ 𝑈 ∧ 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙) |
| 81 | 80 | rexlimdv3a 3146 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) ∧ 𝑎 ∈ 𝑈 ∧ 𝑋 = (𝑎 + (𝑏 · 𝑍))) → (∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙)) |
| 82 | 81 | rexlimdv3a 3146 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) → (∃𝑎 ∈ 𝑈 𝑋 = (𝑎 + (𝑏 · 𝑍)) → (∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙))) |
| 83 | 50, 82 | biimtrid 242 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) → (∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) → (∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙))) |
| 84 | 83 | impd 410 |
. . . 4
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐾 ∧ 𝑙 ∈ 𝐾)) → ((∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙)) |
| 85 | 84 | ralrimivva 3188 |
. . 3
⊢ (𝜑 → ∀𝑏 ∈ 𝐾 ∀𝑙 ∈ 𝐾 ((∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙)) |
| 86 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑏 = 𝑙 → (𝑏 · 𝑍) = (𝑙 · 𝑍)) |
| 87 | 86 | oveq2d 7426 |
. . . . . 6
⊢ (𝑏 = 𝑙 → (𝑐 + (𝑏 · 𝑍)) = (𝑐 + (𝑙 · 𝑍))) |
| 88 | 87 | eqeq2d 2747 |
. . . . 5
⊢ (𝑏 = 𝑙 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑐 + (𝑙 · 𝑍)))) |
| 89 | 88 | rexbidv 3165 |
. . . 4
⊢ (𝑏 = 𝑙 → (∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)))) |
| 90 | 89 | reu4 3719 |
. . 3
⊢
(∃!𝑏 ∈
𝐾 ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ (∃𝑏 ∈ 𝐾 ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∀𝑏 ∈ 𝐾 ∀𝑙 ∈ 𝐾 ((∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙))) |
| 91 | 47, 85, 90 | sylanbrc 583 |
. 2
⊢ (𝜑 → ∃!𝑏 ∈ 𝐾 ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍))) |
| 92 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑏 = 𝑘 → (𝑏 · 𝑍) = (𝑘 · 𝑍)) |
| 93 | 92 | oveq2d 7426 |
. . . . . 6
⊢ (𝑏 = 𝑘 → (𝑐 + (𝑏 · 𝑍)) = (𝑐 + (𝑘 · 𝑍))) |
| 94 | 93 | eqeq2d 2747 |
. . . . 5
⊢ (𝑏 = 𝑘 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑐 + (𝑘 · 𝑍)))) |
| 95 | 94 | rexbidv 3165 |
. . . 4
⊢ (𝑏 = 𝑘 → (∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)))) |
| 96 | 95 | cbvreuvw 3388 |
. . 3
⊢
(∃!𝑏 ∈
𝐾 ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃!𝑘 ∈ 𝐾 ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍))) |
| 97 | | oveq1 7417 |
. . . . . 6
⊢ (𝑐 = 𝑦 → (𝑐 + (𝑘 · 𝑍)) = (𝑦 + (𝑘 · 𝑍))) |
| 98 | 97 | eqeq2d 2747 |
. . . . 5
⊢ (𝑐 = 𝑦 → (𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍)))) |
| 99 | 98 | cbvrexvw 3225 |
. . . 4
⊢
(∃𝑐 ∈
𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) |
| 100 | 99 | reubii 3373 |
. . 3
⊢
(∃!𝑘 ∈
𝐾 ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ ∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) |
| 101 | 96, 100 | bitri 275 |
. 2
⊢
(∃!𝑏 ∈
𝐾 ∃𝑐 ∈ 𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) |
| 102 | 91, 101 | sylib 218 |
1
⊢ (𝜑 → ∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍))) |