Step | Hyp | Ref
| Expression |
1 | | lshpsmreu.x |
. . . . . . 7
β’ (π β π β π) |
2 | | lshpsmreu.e |
. . . . . . 7
β’ (π β (π β (πβ{π})) = π) |
3 | 1, 2 | eleqtrrd 2836 |
. . . . . 6
β’ (π β π β (π β (πβ{π}))) |
4 | | lshpsmreu.w |
. . . . . . . . . 10
β’ (π β π β LVec) |
5 | | lveclmod 20709 |
. . . . . . . . . 10
β’ (π β LVec β π β LMod) |
6 | 4, 5 | syl 17 |
. . . . . . . . 9
β’ (π β π β LMod) |
7 | | eqid 2732 |
. . . . . . . . . 10
β’
(LSubSpβπ) =
(LSubSpβπ) |
8 | 7 | lsssssubg 20561 |
. . . . . . . . 9
β’ (π β LMod β
(LSubSpβπ) β
(SubGrpβπ)) |
9 | 6, 8 | syl 17 |
. . . . . . . 8
β’ (π β (LSubSpβπ) β (SubGrpβπ)) |
10 | | lshpsmreu.h |
. . . . . . . . 9
β’ π» = (LSHypβπ) |
11 | | lshpsmreu.u |
. . . . . . . . 9
β’ (π β π β π») |
12 | 7, 10, 6, 11 | lshplss 37839 |
. . . . . . . 8
β’ (π β π β (LSubSpβπ)) |
13 | 9, 12 | sseldd 3982 |
. . . . . . 7
β’ (π β π β (SubGrpβπ)) |
14 | | lshpsmreu.z |
. . . . . . . . 9
β’ (π β π β π) |
15 | | lshpsmreu.v |
. . . . . . . . . 10
β’ π = (Baseβπ) |
16 | | lshpsmreu.n |
. . . . . . . . . 10
β’ π = (LSpanβπ) |
17 | 15, 7, 16 | lspsncl 20580 |
. . . . . . . . 9
β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
18 | 6, 14, 17 | syl2anc 584 |
. . . . . . . 8
β’ (π β (πβ{π}) β (LSubSpβπ)) |
19 | 9, 18 | sseldd 3982 |
. . . . . . 7
β’ (π β (πβ{π}) β (SubGrpβπ)) |
20 | | lshpsmreu.a |
. . . . . . . 8
β’ + =
(+gβπ) |
21 | | lshpsmreu.p |
. . . . . . . 8
β’ β =
(LSSumβπ) |
22 | 20, 21 | lsmelval 19511 |
. . . . . . 7
β’ ((π β (SubGrpβπ) β§ (πβ{π}) β (SubGrpβπ)) β (π β (π β (πβ{π})) β βπ β π βπ§ β (πβ{π})π = (π + π§))) |
23 | 13, 19, 22 | syl2anc 584 |
. . . . . 6
β’ (π β (π β (π β (πβ{π})) β βπ β π βπ§ β (πβ{π})π = (π + π§))) |
24 | 3, 23 | mpbid 231 |
. . . . 5
β’ (π β βπ β π βπ§ β (πβ{π})π = (π + π§)) |
25 | | df-rex 3071 |
. . . . . . 7
β’
(βπ§ β
(πβ{π})π = (π + π§) β βπ§(π§ β (πβ{π}) β§ π = (π + π§))) |
26 | | lshpsmreu.d |
. . . . . . . . . . . . 13
β’ π· = (Scalarβπ) |
27 | | lshpsmreu.k |
. . . . . . . . . . . . 13
β’ πΎ = (Baseβπ·) |
28 | | lshpsmreu.t |
. . . . . . . . . . . . 13
β’ Β· = (
Β·π βπ) |
29 | 26, 27, 15, 28, 16 | lspsnel 20606 |
. . . . . . . . . . . 12
β’ ((π β LMod β§ π β π) β (π§ β (πβ{π}) β βπ β πΎ π§ = (π Β· π))) |
30 | 6, 14, 29 | syl2anc 584 |
. . . . . . . . . . 11
β’ (π β (π§ β (πβ{π}) β βπ β πΎ π§ = (π Β· π))) |
31 | 30 | anbi1d 630 |
. . . . . . . . . 10
β’ (π β ((π§ β (πβ{π}) β§ π = (π + π§)) β (βπ β πΎ π§ = (π Β· π) β§ π = (π + π§)))) |
32 | | r19.41v 3188 |
. . . . . . . . . 10
β’
(βπ β
πΎ (π§ = (π Β· π) β§ π = (π + π§)) β (βπ β πΎ π§ = (π Β· π) β§ π = (π + π§))) |
33 | 31, 32 | bitr4di 288 |
. . . . . . . . 9
β’ (π β ((π§ β (πβ{π}) β§ π = (π + π§)) β βπ β πΎ (π§ = (π Β· π) β§ π = (π + π§)))) |
34 | 33 | exbidv 1924 |
. . . . . . . 8
β’ (π β (βπ§(π§ β (πβ{π}) β§ π = (π + π§)) β βπ§βπ β πΎ (π§ = (π Β· π) β§ π = (π + π§)))) |
35 | | rexcom4 3285 |
. . . . . . . . 9
β’
(βπ β
πΎ βπ§(π§ = (π Β· π) β§ π = (π + π§)) β βπ§βπ β πΎ (π§ = (π Β· π) β§ π = (π + π§))) |
36 | | ovex 7438 |
. . . . . . . . . . 11
β’ (π Β· π) β V |
37 | | oveq2 7413 |
. . . . . . . . . . . 12
β’ (π§ = (π Β· π) β (π + π§) = (π + (π Β· π))) |
38 | 37 | eqeq2d 2743 |
. . . . . . . . . . 11
β’ (π§ = (π Β· π) β (π = (π + π§) β π = (π + (π Β· π)))) |
39 | 36, 38 | ceqsexv 3525 |
. . . . . . . . . 10
β’
(βπ§(π§ = (π Β· π) β§ π = (π + π§)) β π = (π + (π Β· π))) |
40 | 39 | rexbii 3094 |
. . . . . . . . 9
β’
(βπ β
πΎ βπ§(π§ = (π Β· π) β§ π = (π + π§)) β βπ β πΎ π = (π + (π Β· π))) |
41 | 35, 40 | bitr3i 276 |
. . . . . . . 8
β’
(βπ§βπ β πΎ (π§ = (π Β· π) β§ π = (π + π§)) β βπ β πΎ π = (π + (π Β· π))) |
42 | 34, 41 | bitrdi 286 |
. . . . . . 7
β’ (π β (βπ§(π§ β (πβ{π}) β§ π = (π + π§)) β βπ β πΎ π = (π + (π Β· π)))) |
43 | 25, 42 | bitrid 282 |
. . . . . 6
β’ (π β (βπ§ β (πβ{π})π = (π + π§) β βπ β πΎ π = (π + (π Β· π)))) |
44 | 43 | rexbidv 3178 |
. . . . 5
β’ (π β (βπ β π βπ§ β (πβ{π})π = (π + π§) β βπ β π βπ β πΎ π = (π + (π Β· π)))) |
45 | 24, 44 | mpbid 231 |
. . . 4
β’ (π β βπ β π βπ β πΎ π = (π + (π Β· π))) |
46 | | rexcom 3287 |
. . . 4
β’
(βπ β
π βπ β πΎ π = (π + (π Β· π)) β βπ β πΎ βπ β π π = (π + (π Β· π))) |
47 | 45, 46 | sylib 217 |
. . 3
β’ (π β βπ β πΎ βπ β π π = (π + (π Β· π))) |
48 | | oveq1 7412 |
. . . . . . . 8
β’ (π = π β (π + (π Β· π)) = (π + (π Β· π))) |
49 | 48 | eqeq2d 2743 |
. . . . . . 7
β’ (π = π β (π = (π + (π Β· π)) β π = (π + (π Β· π)))) |
50 | 49 | cbvrexvw 3235 |
. . . . . 6
β’
(βπ β
π π = (π + (π Β· π)) β βπ β π π = (π + (π Β· π))) |
51 | | eqid 2732 |
. . . . . . . . . 10
β’
(0gβπ) = (0gβπ) |
52 | | eqid 2732 |
. . . . . . . . . 10
β’
(Cntzβπ) =
(Cntzβπ) |
53 | | simp11l 1284 |
. . . . . . . . . . 11
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π) |
54 | 53, 13 | syl 17 |
. . . . . . . . . 10
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π β (SubGrpβπ)) |
55 | 53, 19 | syl 17 |
. . . . . . . . . 10
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β (πβ{π}) β (SubGrpβπ)) |
56 | 15, 51, 16, 21, 10, 4, 11, 14, 2 | lshpdisj 37845 |
. . . . . . . . . . 11
β’ (π β (π β© (πβ{π})) = {(0gβπ)}) |
57 | 53, 56 | syl 17 |
. . . . . . . . . 10
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β (π β© (πβ{π})) = {(0gβπ)}) |
58 | 53, 4 | syl 17 |
. . . . . . . . . . . . 13
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π β LVec) |
59 | 58, 5 | syl 17 |
. . . . . . . . . . . 12
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π β LMod) |
60 | | lmodabl 20511 |
. . . . . . . . . . . 12
β’ (π β LMod β π β Abel) |
61 | 59, 60 | syl 17 |
. . . . . . . . . . 11
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π β Abel) |
62 | 52, 61, 54, 55 | ablcntzd 19719 |
. . . . . . . . . 10
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π β ((Cntzβπ)β(πβ{π}))) |
63 | | simp12 1204 |
. . . . . . . . . 10
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π β π) |
64 | | simp2 1137 |
. . . . . . . . . 10
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π β π) |
65 | | simp1rl 1238 |
. . . . . . . . . . . 12
β’ (((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β π β πΎ) |
66 | 65 | 3ad2ant1 1133 |
. . . . . . . . . . 11
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π β πΎ) |
67 | 53, 14 | syl 17 |
. . . . . . . . . . 11
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π β π) |
68 | 15, 28, 26, 27, 16, 59, 66, 67 | lspsneli 20604 |
. . . . . . . . . 10
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β (π Β· π) β (πβ{π})) |
69 | | simp1rr 1239 |
. . . . . . . . . . . 12
β’ (((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β π β πΎ) |
70 | 69 | 3ad2ant1 1133 |
. . . . . . . . . . 11
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π β πΎ) |
71 | 15, 28, 26, 27, 16, 59, 70, 67 | lspsneli 20604 |
. . . . . . . . . 10
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β (π Β· π) β (πβ{π})) |
72 | | simp13 1205 |
. . . . . . . . . . 11
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π = (π + (π Β· π))) |
73 | | simp3 1138 |
. . . . . . . . . . 11
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π = (π + (π Β· π))) |
74 | 72, 73 | eqtr3d 2774 |
. . . . . . . . . 10
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β (π + (π Β· π)) = (π + (π Β· π))) |
75 | 20, 51, 52, 54, 55, 57, 62, 63, 64, 68, 71, 74 | subgdisj2 19554 |
. . . . . . . . 9
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β (π Β· π) = (π Β· π)) |
76 | 53, 11 | syl 17 |
. . . . . . . . . . 11
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π β π») |
77 | 53, 2 | syl 17 |
. . . . . . . . . . 11
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β (π β (πβ{π})) = π) |
78 | 15, 16, 21, 10, 51, 59, 76, 67, 77 | lshpne0 37844 |
. . . . . . . . . 10
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π β (0gβπ)) |
79 | 15, 28, 26, 27, 51, 58, 66, 70, 67, 78 | lvecvscan2 20717 |
. . . . . . . . 9
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β ((π Β· π) = (π Β· π) β π = π)) |
80 | 75, 79 | mpbid 231 |
. . . . . . . 8
β’ ((((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β§ π β π β§ π = (π + (π Β· π))) β π = π) |
81 | 80 | rexlimdv3a 3159 |
. . . . . . 7
β’ (((π β§ (π β πΎ β§ π β πΎ)) β§ π β π β§ π = (π + (π Β· π))) β (βπ β π π = (π + (π Β· π)) β π = π)) |
82 | 81 | rexlimdv3a 3159 |
. . . . . 6
β’ ((π β§ (π β πΎ β§ π β πΎ)) β (βπ β π π = (π + (π Β· π)) β (βπ β π π = (π + (π Β· π)) β π = π))) |
83 | 50, 82 | biimtrid 241 |
. . . . 5
β’ ((π β§ (π β πΎ β§ π β πΎ)) β (βπ β π π = (π + (π Β· π)) β (βπ β π π = (π + (π Β· π)) β π = π))) |
84 | 83 | impd 411 |
. . . 4
β’ ((π β§ (π β πΎ β§ π β πΎ)) β ((βπ β π π = (π + (π Β· π)) β§ βπ β π π = (π + (π Β· π))) β π = π)) |
85 | 84 | ralrimivva 3200 |
. . 3
β’ (π β βπ β πΎ βπ β πΎ ((βπ β π π = (π + (π Β· π)) β§ βπ β π π = (π + (π Β· π))) β π = π)) |
86 | | oveq1 7412 |
. . . . . . 7
β’ (π = π β (π Β· π) = (π Β· π)) |
87 | 86 | oveq2d 7421 |
. . . . . 6
β’ (π = π β (π + (π Β· π)) = (π + (π Β· π))) |
88 | 87 | eqeq2d 2743 |
. . . . 5
β’ (π = π β (π = (π + (π Β· π)) β π = (π + (π Β· π)))) |
89 | 88 | rexbidv 3178 |
. . . 4
β’ (π = π β (βπ β π π = (π + (π Β· π)) β βπ β π π = (π + (π Β· π)))) |
90 | 89 | reu4 3726 |
. . 3
β’
(β!π β
πΎ βπ β π π = (π + (π Β· π)) β (βπ β πΎ βπ β π π = (π + (π Β· π)) β§ βπ β πΎ βπ β πΎ ((βπ β π π = (π + (π Β· π)) β§ βπ β π π = (π + (π Β· π))) β π = π))) |
91 | 47, 85, 90 | sylanbrc 583 |
. 2
β’ (π β β!π β πΎ βπ β π π = (π + (π Β· π))) |
92 | | oveq1 7412 |
. . . . . . 7
β’ (π = π β (π Β· π) = (π Β· π)) |
93 | 92 | oveq2d 7421 |
. . . . . 6
β’ (π = π β (π + (π Β· π)) = (π + (π Β· π))) |
94 | 93 | eqeq2d 2743 |
. . . . 5
β’ (π = π β (π = (π + (π Β· π)) β π = (π + (π Β· π)))) |
95 | 94 | rexbidv 3178 |
. . . 4
β’ (π = π β (βπ β π π = (π + (π Β· π)) β βπ β π π = (π + (π Β· π)))) |
96 | 95 | cbvreuvw 3400 |
. . 3
β’
(β!π β
πΎ βπ β π π = (π + (π Β· π)) β β!π β πΎ βπ β π π = (π + (π Β· π))) |
97 | | oveq1 7412 |
. . . . . 6
β’ (π = π¦ β (π + (π Β· π)) = (π¦ + (π Β· π))) |
98 | 97 | eqeq2d 2743 |
. . . . 5
β’ (π = π¦ β (π = (π + (π Β· π)) β π = (π¦ + (π Β· π)))) |
99 | 98 | cbvrexvw 3235 |
. . . 4
β’
(βπ β
π π = (π + (π Β· π)) β βπ¦ β π π = (π¦ + (π Β· π))) |
100 | 99 | reubii 3385 |
. . 3
β’
(β!π β
πΎ βπ β π π = (π + (π Β· π)) β β!π β πΎ βπ¦ β π π = (π¦ + (π Β· π))) |
101 | 96, 100 | bitri 274 |
. 2
β’
(β!π β
πΎ βπ β π π = (π + (π Β· π)) β β!π β πΎ βπ¦ β π π = (π¦ + (π Β· π))) |
102 | 91, 101 | sylib 217 |
1
β’ (π β β!π β πΎ βπ¦ β π π = (π¦ + (π Β· π))) |