Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpsmreu Structured version   Visualization version   GIF version

Theorem lshpsmreu 37050
Description: Lemma for lshpkrex 37059. Show uniqueness of ring multiplier 𝑘 when a vector 𝑋 is broken down into components, one in a hyperplane and the other outside of it . TODO: do we need the cbvrexv 3378 for 𝑎 to 𝑐? (Contributed by NM, 4-Jan-2015.)
Hypotheses
Ref Expression
lshpsmreu.v 𝑉 = (Base‘𝑊)
lshpsmreu.a + = (+g𝑊)
lshpsmreu.n 𝑁 = (LSpan‘𝑊)
lshpsmreu.p = (LSSum‘𝑊)
lshpsmreu.h 𝐻 = (LSHyp‘𝑊)
lshpsmreu.w (𝜑𝑊 ∈ LVec)
lshpsmreu.u (𝜑𝑈𝐻)
lshpsmreu.z (𝜑𝑍𝑉)
lshpsmreu.x (𝜑𝑋𝑉)
lshpsmreu.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpsmreu.d 𝐷 = (Scalar‘𝑊)
lshpsmreu.k 𝐾 = (Base‘𝐷)
lshpsmreu.t · = ( ·𝑠𝑊)
Assertion
Ref Expression
lshpsmreu (𝜑 → ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
Distinct variable groups:   𝑦,𝑘, +   𝑘,𝐾   · ,𝑘,𝑦   𝑈,𝑘,𝑦   𝑘,𝑋,𝑦   𝑘,𝑍,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑘)   𝐷(𝑦,𝑘)   (𝑦,𝑘)   𝐻(𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑦,𝑘)

Proof of Theorem lshpsmreu
Dummy variables 𝑎 𝑏 𝑐 𝑙 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpsmreu.x . . . . . . 7 (𝜑𝑋𝑉)
2 lshpsmreu.e . . . . . . 7 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
31, 2eleqtrrd 2842 . . . . . 6 (𝜑𝑋 ∈ (𝑈 (𝑁‘{𝑍})))
4 lshpsmreu.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
5 lveclmod 20283 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
7 eqid 2738 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
87lsssssubg 20135 . . . . . . . . 9 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
96, 8syl 17 . . . . . . . 8 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
10 lshpsmreu.h . . . . . . . . 9 𝐻 = (LSHyp‘𝑊)
11 lshpsmreu.u . . . . . . . . 9 (𝜑𝑈𝐻)
127, 10, 6, 11lshplss 36922 . . . . . . . 8 (𝜑𝑈 ∈ (LSubSp‘𝑊))
139, 12sseldd 3918 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝑊))
14 lshpsmreu.z . . . . . . . . 9 (𝜑𝑍𝑉)
15 lshpsmreu.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
16 lshpsmreu.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
1715, 7, 16lspsncl 20154 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
186, 14, 17syl2anc 583 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
199, 18sseldd 3918 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
20 lshpsmreu.a . . . . . . . 8 + = (+g𝑊)
21 lshpsmreu.p . . . . . . . 8 = (LSSum‘𝑊)
2220, 21lsmelval 19169 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑋 ∈ (𝑈 (𝑁‘{𝑍})) ↔ ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧)))
2313, 19, 22syl2anc 583 . . . . . 6 (𝜑 → (𝑋 ∈ (𝑈 (𝑁‘{𝑍})) ↔ ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧)))
243, 23mpbid 231 . . . . 5 (𝜑 → ∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧))
25 df-rex 3069 . . . . . . 7 (∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)))
26 lshpsmreu.d . . . . . . . . . . . . 13 𝐷 = (Scalar‘𝑊)
27 lshpsmreu.k . . . . . . . . . . . . 13 𝐾 = (Base‘𝐷)
28 lshpsmreu.t . . . . . . . . . . . . 13 · = ( ·𝑠𝑊)
2926, 27, 15, 28, 16lspsnel 20180 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑧 ∈ (𝑁‘{𝑍}) ↔ ∃𝑏𝐾 𝑧 = (𝑏 · 𝑍)))
306, 14, 29syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑧 ∈ (𝑁‘{𝑍}) ↔ ∃𝑏𝐾 𝑧 = (𝑏 · 𝑍)))
3130anbi1d 629 . . . . . . . . . 10 (𝜑 → ((𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ (∃𝑏𝐾 𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
32 r19.41v 3273 . . . . . . . . . 10 (∃𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ (∃𝑏𝐾 𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))
3331, 32bitr4di 288 . . . . . . . . 9 (𝜑 → ((𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
3433exbidv 1925 . . . . . . . 8 (𝜑 → (∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧))))
35 rexcom4 3179 . . . . . . . . 9 (∃𝑏𝐾𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)))
36 ovex 7288 . . . . . . . . . . 11 (𝑏 · 𝑍) ∈ V
37 oveq2 7263 . . . . . . . . . . . 12 (𝑧 = (𝑏 · 𝑍) → (𝑐 + 𝑧) = (𝑐 + (𝑏 · 𝑍)))
3837eqeq2d 2749 . . . . . . . . . . 11 (𝑧 = (𝑏 · 𝑍) → (𝑋 = (𝑐 + 𝑧) ↔ 𝑋 = (𝑐 + (𝑏 · 𝑍))))
3936, 38ceqsexv 3469 . . . . . . . . . 10 (∃𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4039rexbii 3177 . . . . . . . . 9 (∃𝑏𝐾𝑧(𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4135, 40bitr3i 276 . . . . . . . 8 (∃𝑧𝑏𝐾 (𝑧 = (𝑏 · 𝑍) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4234, 41bitrdi 286 . . . . . . 7 (𝜑 → (∃𝑧(𝑧 ∈ (𝑁‘{𝑍}) ∧ 𝑋 = (𝑐 + 𝑧)) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4325, 42syl5bb 282 . . . . . 6 (𝜑 → (∃𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4443rexbidv 3225 . . . . 5 (𝜑 → (∃𝑐𝑈𝑧 ∈ (𝑁‘{𝑍})𝑋 = (𝑐 + 𝑧) ↔ ∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍))))
4524, 44mpbid 231 . . . 4 (𝜑 → ∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)))
46 rexcom 3281 . . . 4 (∃𝑐𝑈𝑏𝐾 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
4745, 46sylib 217 . . 3 (𝜑 → ∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
48 oveq1 7262 . . . . . . . 8 (𝑐 = 𝑎 → (𝑐 + (𝑏 · 𝑍)) = (𝑎 + (𝑏 · 𝑍)))
4948eqeq2d 2749 . . . . . . 7 (𝑐 = 𝑎 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑎 + (𝑏 · 𝑍))))
5049cbvrexvw 3373 . . . . . 6 (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑎𝑈 𝑋 = (𝑎 + (𝑏 · 𝑍)))
51 eqid 2738 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
52 eqid 2738 . . . . . . . . . 10 (Cntz‘𝑊) = (Cntz‘𝑊)
53 simp11l 1282 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝜑)
5453, 13syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ∈ (SubGrp‘𝑊))
5553, 19syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
5615, 51, 16, 21, 10, 4, 11, 14, 2lshpdisj 36928 . . . . . . . . . . 11 (𝜑 → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
5753, 56syl 17 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑈 ∩ (𝑁‘{𝑍})) = {(0g𝑊)})
5853, 4syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ LVec)
5958, 5syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ LMod)
60 lmodabl 20085 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
6159, 60syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑊 ∈ Abel)
6252, 61, 54, 55ablcntzd 19373 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈 ⊆ ((Cntz‘𝑊)‘(𝑁‘{𝑍})))
63 simp12 1202 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑎𝑈)
64 simp2 1135 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑐𝑈)
65 simp1rl 1236 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → 𝑏𝐾)
66653ad2ant1 1131 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏𝐾)
6753, 14syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑍𝑉)
6815, 28, 26, 27, 16, 59, 66, 67lspsneli 20178 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑏 · 𝑍) ∈ (𝑁‘{𝑍}))
69 simp1rr 1237 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → 𝑙𝐾)
70693ad2ant1 1131 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑙𝐾)
7115, 28, 26, 27, 16, 59, 70, 67lspsneli 20178 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑙 · 𝑍) ∈ (𝑁‘{𝑍}))
72 simp13 1203 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑋 = (𝑎 + (𝑏 · 𝑍)))
73 simp3 1136 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑋 = (𝑐 + (𝑙 · 𝑍)))
7472, 73eqtr3d 2780 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑎 + (𝑏 · 𝑍)) = (𝑐 + (𝑙 · 𝑍)))
7520, 51, 52, 54, 55, 57, 62, 63, 64, 68, 71, 74subgdisj2 19213 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑏 · 𝑍) = (𝑙 · 𝑍))
7653, 11syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑈𝐻)
7753, 2syl 17 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
7815, 16, 21, 10, 51, 59, 76, 67, 77lshpne0 36927 . . . . . . . . . 10 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑍 ≠ (0g𝑊))
7915, 28, 26, 27, 51, 58, 66, 70, 67, 78lvecvscan2 20289 . . . . . . . . 9 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → ((𝑏 · 𝑍) = (𝑙 · 𝑍) ↔ 𝑏 = 𝑙))
8075, 79mpbid 231 . . . . . . . 8 ((((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) ∧ 𝑐𝑈𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙)
8180rexlimdv3a 3214 . . . . . . 7 (((𝜑 ∧ (𝑏𝐾𝑙𝐾)) ∧ 𝑎𝑈𝑋 = (𝑎 + (𝑏 · 𝑍))) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙))
8281rexlimdv3a 3214 . . . . . 6 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → (∃𝑎𝑈 𝑋 = (𝑎 + (𝑏 · 𝑍)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙)))
8350, 82syl5bi 241 . . . . 5 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍)) → 𝑏 = 𝑙)))
8483impd 410 . . . 4 ((𝜑 ∧ (𝑏𝐾𝑙𝐾)) → ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙))
8584ralrimivva 3114 . . 3 (𝜑 → ∀𝑏𝐾𝑙𝐾 ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙))
86 oveq1 7262 . . . . . . 7 (𝑏 = 𝑙 → (𝑏 · 𝑍) = (𝑙 · 𝑍))
8786oveq2d 7271 . . . . . 6 (𝑏 = 𝑙 → (𝑐 + (𝑏 · 𝑍)) = (𝑐 + (𝑙 · 𝑍)))
8887eqeq2d 2749 . . . . 5 (𝑏 = 𝑙 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑐 + (𝑙 · 𝑍))))
8988rexbidv 3225 . . . 4 (𝑏 = 𝑙 → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))))
9089reu4 3661 . . 3 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ (∃𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∀𝑏𝐾𝑙𝐾 ((∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ∧ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑙 · 𝑍))) → 𝑏 = 𝑙)))
9147, 85, 90sylanbrc 582 . 2 (𝜑 → ∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)))
92 oveq1 7262 . . . . . . 7 (𝑏 = 𝑘 → (𝑏 · 𝑍) = (𝑘 · 𝑍))
9392oveq2d 7271 . . . . . 6 (𝑏 = 𝑘 → (𝑐 + (𝑏 · 𝑍)) = (𝑐 + (𝑘 · 𝑍)))
9493eqeq2d 2749 . . . . 5 (𝑏 = 𝑘 → (𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ 𝑋 = (𝑐 + (𝑘 · 𝑍))))
9594rexbidv 3225 . . . 4 (𝑏 = 𝑘 → (∃𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍))))
9695cbvreuvw 3375 . . 3 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃!𝑘𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)))
97 oveq1 7262 . . . . . 6 (𝑐 = 𝑦 → (𝑐 + (𝑘 · 𝑍)) = (𝑦 + (𝑘 · 𝑍)))
9897eqeq2d 2749 . . . . 5 (𝑐 = 𝑦 → (𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ 𝑋 = (𝑦 + (𝑘 · 𝑍))))
9998cbvrexvw 3373 . . . 4 (∃𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10099reubii 3317 . . 3 (∃!𝑘𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑘 · 𝑍)) ↔ ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10196, 100bitri 274 . 2 (∃!𝑏𝐾𝑐𝑈 𝑋 = (𝑐 + (𝑏 · 𝑍)) ↔ ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
10291, 101sylib 217 1 (𝜑 → ∃!𝑘𝐾𝑦𝑈 𝑋 = (𝑦 + (𝑘 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065  cin 3882  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  SubGrpcsubg 18664  Cntzccntz 18836  LSSumclsm 19154  Abelcabl 19302  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279  LSHypclsh 36916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lshyp 36918
This theorem is referenced by:  lshpkrlem1  37051  lshpkrlem2  37052  lshpkrlem3  37053  lshpkrcl  37057  dochfl1  39417
  Copyright terms: Public domain W3C validator