Step | Hyp | Ref
| Expression |
1 | | fourierdlem50.u |
. . 3
⊢ 𝑈 = (℩𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
2 | | fourierdlem50.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | fourierdlem50.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
4 | | fourierdlem50.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | | fourierdlem50.altb |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 < 𝐵) |
6 | 3, 4, 5 | ltled 10839 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
7 | | fourierdlem50.p |
. . . . . . . . . . . . 13
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
8 | | fourierdlem50.v |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
9 | 7, 2, 8 | fourierdlem15 43165 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋))) |
10 | | pire 25163 |
. . . . . . . . . . . . . . . 16
⊢ π
∈ ℝ |
11 | 10 | renegcli 10998 |
. . . . . . . . . . . . . . 15
⊢ -π
∈ ℝ |
12 | 11 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → -π ∈
ℝ) |
13 | | fourierdlem50.xre |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ ℝ) |
14 | 12, 13 | readdcld 10721 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (-π + 𝑋) ∈ ℝ) |
15 | 10 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → π ∈
ℝ) |
16 | 15, 13 | readdcld 10721 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (π + 𝑋) ∈ ℝ) |
17 | 14, 16 | iccssred 12879 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ) |
18 | 9, 17 | fssd 6518 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉:(0...𝑀)⟶ℝ) |
19 | 18 | ffvelrnda 6848 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑉‘𝑖) ∈ ℝ) |
20 | 13 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ) |
21 | 19, 20 | resubcld 11119 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ((𝑉‘𝑖) − 𝑋) ∈ ℝ) |
22 | | fourierdlem50.q |
. . . . . . . . 9
⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
23 | 21, 22 | fmptd 6875 |
. . . . . . . 8
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
24 | 22 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋))) |
25 | | fveq2 6663 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑉‘𝑖) = (𝑉‘0)) |
26 | 25 | oveq1d 7171 |
. . . . . . . . . . . 12
⊢ (𝑖 = 0 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘0) − 𝑋)) |
27 | 26 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘0) − 𝑋)) |
28 | | nnssnn0 11950 |
. . . . . . . . . . . . . . 15
⊢ ℕ
⊆ ℕ0 |
29 | 28 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ℕ ⊆
ℕ0) |
30 | | nn0uz 12333 |
. . . . . . . . . . . . . 14
⊢
ℕ0 = (ℤ≥‘0) |
31 | 29, 30 | sseqtrdi 3944 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℕ ⊆
(ℤ≥‘0)) |
32 | 31, 2 | sseldd 3895 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
33 | | eluzfz1 12976 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
35 | 18, 34 | ffvelrnd 6849 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑉‘0) ∈ ℝ) |
36 | 35, 13 | resubcld 11119 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ) |
37 | 24, 27, 34, 36 | fvmptd 6771 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋)) |
38 | 7 | fourierdlem2 43152 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
39 | 2, 38 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
40 | 8, 39 | mpbid 235 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
41 | 40 | simprd 499 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))) |
42 | 41 | simpld 498 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋))) |
43 | 42 | simpld 498 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉‘0) = (-π + 𝑋)) |
44 | 43 | oveq1d 7171 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑉‘0) − 𝑋) = ((-π + 𝑋) − 𝑋)) |
45 | 12 | recnd 10720 |
. . . . . . . . . . 11
⊢ (𝜑 → -π ∈
ℂ) |
46 | 13 | recnd 10720 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ ℂ) |
47 | 45, 46 | pncand 11049 |
. . . . . . . . . 10
⊢ (𝜑 → ((-π + 𝑋) − 𝑋) = -π) |
48 | 37, 44, 47 | 3eqtrd 2797 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄‘0) = -π) |
49 | 12 | rexrd 10742 |
. . . . . . . . . 10
⊢ (𝜑 → -π ∈
ℝ*) |
50 | 15 | rexrd 10742 |
. . . . . . . . . 10
⊢ (𝜑 → π ∈
ℝ*) |
51 | | fourierdlem50.ab |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
52 | 3 | leidd 11257 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ≤ 𝐴) |
53 | 3, 4, 3, 52, 6 | eliccd 42542 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
54 | 51, 53 | sseldd 3895 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (-π[,]π)) |
55 | | iccgelb 12848 |
. . . . . . . . . 10
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ* ∧ 𝐴 ∈ (-π[,]π)) →
-π ≤ 𝐴) |
56 | 49, 50, 54, 55 | syl3anc 1368 |
. . . . . . . . 9
⊢ (𝜑 → -π ≤ 𝐴) |
57 | 48, 56 | eqbrtrd 5058 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘0) ≤ 𝐴) |
58 | 4 | leidd 11257 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ≤ 𝐵) |
59 | 3, 4, 4, 6, 58 | eliccd 42542 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
60 | 51, 59 | sseldd 3895 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ (-π[,]π)) |
61 | | iccleub 12847 |
. . . . . . . . . 10
⊢ ((-π
∈ ℝ* ∧ π ∈ ℝ* ∧ 𝐵 ∈ (-π[,]π)) →
𝐵 ≤
π) |
62 | 49, 50, 60, 61 | syl3anc 1368 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ≤ π) |
63 | | fveq2 6663 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑀 → (𝑉‘𝑖) = (𝑉‘𝑀)) |
64 | 63 | oveq1d 7171 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑀 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑀) − 𝑋)) |
65 | 64 | adantl 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 = 𝑀) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑀) − 𝑋)) |
66 | | eluzfz2 12977 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
67 | 32, 66 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
68 | 18, 67 | ffvelrnd 6849 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑉‘𝑀) ∈ ℝ) |
69 | 68, 13 | resubcld 11119 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑉‘𝑀) − 𝑋) ∈ ℝ) |
70 | 24, 65, 67, 69 | fvmptd 6771 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘𝑀) = ((𝑉‘𝑀) − 𝑋)) |
71 | 42 | simprd 499 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉‘𝑀) = (π + 𝑋)) |
72 | 71 | oveq1d 7171 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑉‘𝑀) − 𝑋) = ((π + 𝑋) − 𝑋)) |
73 | 15 | recnd 10720 |
. . . . . . . . . . 11
⊢ (𝜑 → π ∈
ℂ) |
74 | 73, 46 | pncand 11049 |
. . . . . . . . . 10
⊢ (𝜑 → ((π + 𝑋) − 𝑋) = π) |
75 | 70, 72, 74 | 3eqtrrd 2798 |
. . . . . . . . 9
⊢ (𝜑 → π = (𝑄‘𝑀)) |
76 | 62, 75 | breqtrd 5062 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ≤ (𝑄‘𝑀)) |
77 | | fourierdlem50.j |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) |
78 | | fourierdlem50.t |
. . . . . . . 8
⊢ 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) |
79 | | prfi 8839 |
. . . . . . . . . . . 12
⊢ {𝐴, 𝐵} ∈ Fin |
80 | 79 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
81 | | fzfid 13403 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
82 | 22 | rnmptfi 42201 |
. . . . . . . . . . . . 13
⊢
((0...𝑀) ∈ Fin
→ ran 𝑄 ∈
Fin) |
83 | 81, 82 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝑄 ∈ Fin) |
84 | | infi 8792 |
. . . . . . . . . . . 12
⊢ (ran
𝑄 ∈ Fin → (ran
𝑄 ∩ (𝐴(,)𝐵)) ∈ Fin) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (ran 𝑄 ∩ (𝐴(,)𝐵)) ∈ Fin) |
86 | | unfi 8754 |
. . . . . . . . . . 11
⊢ (({𝐴, 𝐵} ∈ Fin ∧ (ran 𝑄 ∩ (𝐴(,)𝐵)) ∈ Fin) → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ∈ Fin) |
87 | 80, 85, 86 | syl2anc 587 |
. . . . . . . . . 10
⊢ (𝜑 → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ∈ Fin) |
88 | 78, 87 | eqeltrid 2856 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ Fin) |
89 | 3, 4 | jca 515 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
90 | | prssg 4712 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ {𝐴, 𝐵} ⊆ ℝ)) |
91 | 3, 4, 90 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ {𝐴, 𝐵} ⊆ ℝ)) |
92 | 89, 91 | mpbid 235 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐴, 𝐵} ⊆ ℝ) |
93 | | inss2 4136 |
. . . . . . . . . . . . 13
⊢ (ran
𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴(,)𝐵) |
94 | | ioossre 12853 |
. . . . . . . . . . . . 13
⊢ (𝐴(,)𝐵) ⊆ ℝ |
95 | 93, 94 | sstri 3903 |
. . . . . . . . . . . 12
⊢ (ran
𝑄 ∩ (𝐴(,)𝐵)) ⊆ ℝ |
96 | 95 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (ran 𝑄 ∩ (𝐴(,)𝐵)) ⊆ ℝ) |
97 | 92, 96 | unssd 4093 |
. . . . . . . . . 10
⊢ (𝜑 → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ⊆ ℝ) |
98 | 78, 97 | eqsstrid 3942 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ⊆ ℝ) |
99 | | fourierdlem50.s |
. . . . . . . . 9
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) |
100 | | fourierdlem50.n |
. . . . . . . . 9
⊢ 𝑁 = ((♯‘𝑇) − 1) |
101 | 88, 98, 99, 100 | fourierdlem36 43186 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 Isom < , < ((0...𝑁), 𝑇)) |
102 | | eqid 2758 |
. . . . . . . 8
⊢
sup({𝑥 ∈
(0..^𝑀) ∣ (𝑄‘𝑥) ≤ (𝑆‘𝐽)}, ℝ, < ) = sup({𝑥 ∈ (0..^𝑀) ∣ (𝑄‘𝑥) ≤ (𝑆‘𝐽)}, ℝ, < ) |
103 | 2, 3, 4, 6, 23, 57, 76, 77, 78, 101, 102 | fourierdlem20 43170 |
. . . . . . 7
⊢ (𝜑 → ∃𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
104 | | fourierdlem50.ch |
. . . . . . . . . . . . 13
⊢ (𝜒 ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))))) |
105 | 104 | biimpi 219 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))))) |
106 | | simp-4l 782 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) → 𝜑) |
107 | 105, 106 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → 𝜑) |
108 | | simplr 768 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) → 𝑘 ∈ (0..^𝑀)) |
109 | 105, 108 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → 𝑘 ∈ (0..^𝑀)) |
110 | 107, 109 | jca 515 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝜑 ∧ 𝑘 ∈ (0..^𝑀))) |
111 | | simp-4r 783 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
112 | 105, 111 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → 𝑖 ∈ (0..^𝑀)) |
113 | | elfzofz 13115 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (0..^𝑀) → 𝑘 ∈ (0...𝑀)) |
114 | 113 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) → 𝑘 ∈ (0...𝑀)) |
115 | 105, 114 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → 𝑘 ∈ (0...𝑀)) |
116 | 107, 18 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → 𝑉:(0...𝑀)⟶ℝ) |
117 | 116, 115 | ffvelrnd 6849 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → (𝑉‘𝑘) ∈ ℝ) |
118 | 107, 13 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → 𝑋 ∈ ℝ) |
119 | 117, 118 | resubcld 11119 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → ((𝑉‘𝑘) − 𝑋) ∈ ℝ) |
120 | | fveq2 6663 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 𝑘 → (𝑉‘𝑖) = (𝑉‘𝑘)) |
121 | 120 | oveq1d 7171 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 𝑘 → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝑘) − 𝑋)) |
122 | 121, 22 | fvmptg 6762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ (0...𝑀) ∧ ((𝑉‘𝑘) − 𝑋) ∈ ℝ) → (𝑄‘𝑘) = ((𝑉‘𝑘) − 𝑋)) |
123 | 115, 119,
122 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑄‘𝑘) = ((𝑉‘𝑘) − 𝑋)) |
124 | 123, 119 | eqeltrd 2852 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘𝑘) ∈ ℝ) |
125 | 23 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
126 | | fzofzp1 13196 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
127 | 126 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
128 | 125, 127 | ffvelrnd 6849 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
129 | 107, 112,
128 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
130 | | isof1o 7076 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑆 Isom < , < ((0...𝑁), 𝑇) → 𝑆:(0...𝑁)–1-1-onto→𝑇) |
131 | 101, 130 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑆:(0...𝑁)–1-1-onto→𝑇) |
132 | | f1of 6607 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑆:(0...𝑁)–1-1-onto→𝑇 → 𝑆:(0...𝑁)⟶𝑇) |
133 | 131, 132 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑆:(0...𝑁)⟶𝑇) |
134 | | fzofzp1 13196 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁)) |
135 | 77, 134 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐽 + 1) ∈ (0...𝑁)) |
136 | 133, 135 | ffvelrnd 6849 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ 𝑇) |
137 | 98, 136 | sseldd 3895 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ) |
138 | 107, 137 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑆‘(𝐽 + 1)) ∈ ℝ) |
139 | | elfzofz 13115 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁)) |
140 | 77, 139 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐽 ∈ (0...𝑁)) |
141 | 133, 140 | ffvelrnd 6849 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑆‘𝐽) ∈ 𝑇) |
142 | 98, 141 | sseldd 3895 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑆‘𝐽) ∈ ℝ) |
143 | 107, 142 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝑆‘𝐽) ∈ ℝ) |
144 | 105 | simprd 499 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) |
145 | 124 | rexrd 10742 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → (𝑄‘𝑘) ∈
ℝ*) |
146 | 23 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
147 | | fzofzp1 13196 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ (0..^𝑀) → (𝑘 + 1) ∈ (0...𝑀)) |
148 | 147 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) → (𝑘 + 1) ∈ (0...𝑀)) |
149 | 146, 148 | ffvelrnd 6849 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄‘(𝑘 + 1)) ∈ ℝ) |
150 | 149 | rexrd 10742 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄‘(𝑘 + 1)) ∈
ℝ*) |
151 | 110, 150 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → (𝑄‘(𝑘 + 1)) ∈
ℝ*) |
152 | 143 | rexrd 10742 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → (𝑆‘𝐽) ∈
ℝ*) |
153 | 138 | rexrd 10742 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → (𝑆‘(𝐽 + 1)) ∈
ℝ*) |
154 | | elfzoelz 13100 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ) |
155 | 154 | zred 12139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℝ) |
156 | 155 | ltp1d 11621 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 < (𝐽 + 1)) |
157 | 77, 156 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐽 < (𝐽 + 1)) |
158 | | isoeq5 7074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) → (𝑆 Isom < , < ((0...𝑁), 𝑇) ↔ 𝑆 Isom < , < ((0...𝑁), ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))))) |
159 | 78, 158 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑆 Isom < , < ((0...𝑁), 𝑇) ↔ 𝑆 Isom < , < ((0...𝑁), ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))))) |
160 | 101, 159 | sylib 221 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑆 Isom < , < ((0...𝑁), ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))))) |
161 | | isorel 7079 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑆 Isom < , < ((0...𝑁), ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))) ∧ (𝐽 ∈ (0...𝑁) ∧ (𝐽 + 1) ∈ (0...𝑁))) → (𝐽 < (𝐽 + 1) ↔ (𝑆‘𝐽) < (𝑆‘(𝐽 + 1)))) |
162 | 160, 140,
135, 161 | syl12anc 835 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐽 < (𝐽 + 1) ↔ (𝑆‘𝐽) < (𝑆‘(𝐽 + 1)))) |
163 | 157, 162 | mpbid 235 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑆‘𝐽) < (𝑆‘(𝐽 + 1))) |
164 | 107, 163 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → (𝑆‘𝐽) < (𝑆‘(𝐽 + 1))) |
165 | 145, 151,
152, 153, 164 | ioossioobi 42555 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ ((𝑄‘𝑘) ≤ (𝑆‘𝐽) ∧ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝑘 + 1))))) |
166 | 144, 165 | mpbid 235 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → ((𝑄‘𝑘) ≤ (𝑆‘𝐽) ∧ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝑘 + 1)))) |
167 | 166 | simpld 498 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝑄‘𝑘) ≤ (𝑆‘𝐽)) |
168 | 124, 143,
138, 167, 164 | lelttrd 10849 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑄‘𝑘) < (𝑆‘(𝐽 + 1))) |
169 | | elfzofz 13115 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
170 | 169 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0...𝑀)) |
171 | 170 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) → 𝑖 ∈ (0...𝑀)) |
172 | 105, 171 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → 𝑖 ∈ (0...𝑀)) |
173 | 107, 172,
21 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → ((𝑉‘𝑖) − 𝑋) ∈ ℝ) |
174 | 22 | fvmpt2 6775 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ (0...𝑀) ∧ ((𝑉‘𝑖) − 𝑋) ∈ ℝ) → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
175 | 172, 173,
174 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → (𝑄‘𝑖) = ((𝑉‘𝑖) − 𝑋)) |
176 | 175, 173 | eqeltrd 2852 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → (𝑄‘𝑖) ∈ ℝ) |
177 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
178 | 105, 177 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
179 | 176, 129,
143, 138, 164, 178 | fourierdlem10 43160 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → ((𝑄‘𝑖) ≤ (𝑆‘𝐽) ∧ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝑖 + 1)))) |
180 | 179 | simprd 499 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝑖 + 1))) |
181 | 124, 138,
129, 168, 180 | ltletrd 10851 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘𝑘) < (𝑄‘(𝑖 + 1))) |
182 | 124, 129,
118, 181 | ltadd2dd 10850 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑋 + (𝑄‘𝑘)) < (𝑋 + (𝑄‘(𝑖 + 1)))) |
183 | 123 | oveq2d 7172 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑋 + (𝑄‘𝑘)) = (𝑋 + ((𝑉‘𝑘) − 𝑋))) |
184 | 107, 46 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝑋 ∈ ℂ) |
185 | 117 | recnd 10720 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑉‘𝑘) ∈ ℂ) |
186 | 184, 185 | pncan3d 11051 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑋 + ((𝑉‘𝑘) − 𝑋)) = (𝑉‘𝑘)) |
187 | 183, 186 | eqtr2d 2794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑉‘𝑘) = (𝑋 + (𝑄‘𝑘))) |
188 | 112, 126 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝑖 + 1) ∈ (0...𝑀)) |
189 | 18 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ) |
190 | 189, 127 | ffvelrnd 6849 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
191 | 107, 112,
190 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → (𝑉‘(𝑖 + 1)) ∈ ℝ) |
192 | 191, 118 | resubcld 11119 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ) |
193 | 188, 192 | jca 515 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → ((𝑖 + 1) ∈ (0...𝑀) ∧ ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)) |
194 | | eleq1 2839 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑖 + 1) → (𝑘 ∈ (0...𝑀) ↔ (𝑖 + 1) ∈ (0...𝑀))) |
195 | | fveq2 6663 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = (𝑖 + 1) → (𝑉‘𝑘) = (𝑉‘(𝑖 + 1))) |
196 | 195 | oveq1d 7171 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = (𝑖 + 1) → ((𝑉‘𝑘) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
197 | 196 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑖 + 1) → (((𝑉‘𝑘) − 𝑋) ∈ ℝ ↔ ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)) |
198 | 194, 197 | anbi12d 633 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (𝑖 + 1) → ((𝑘 ∈ (0...𝑀) ∧ ((𝑉‘𝑘) − 𝑋) ∈ ℝ) ↔ ((𝑖 + 1) ∈ (0...𝑀) ∧ ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ))) |
199 | | fveq2 6663 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = (𝑖 + 1) → (𝑄‘𝑘) = (𝑄‘(𝑖 + 1))) |
200 | 199, 196 | eqeq12d 2774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = (𝑖 + 1) → ((𝑄‘𝑘) = ((𝑉‘𝑘) − 𝑋) ↔ (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))) |
201 | 198, 200 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = (𝑖 + 1) → (((𝑘 ∈ (0...𝑀) ∧ ((𝑉‘𝑘) − 𝑋) ∈ ℝ) → (𝑄‘𝑘) = ((𝑉‘𝑘) − 𝑋)) ↔ (((𝑖 + 1) ∈ (0...𝑀) ∧ ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)))) |
202 | 201, 122 | vtoclg 3487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 + 1) ∈ (0...𝑀) → (((𝑖 + 1) ∈ (0...𝑀) ∧ ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))) |
203 | 188, 193,
202 | sylc 65 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)) |
204 | 203 | oveq2d 7172 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋))) |
205 | 191 | recnd 10720 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑉‘(𝑖 + 1)) ∈ ℂ) |
206 | 184, 205 | pncan3d 11051 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)) = (𝑉‘(𝑖 + 1))) |
207 | 204, 206 | eqtr2d 2794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑉‘(𝑖 + 1)) = (𝑋 + (𝑄‘(𝑖 + 1)))) |
208 | 182, 187,
207 | 3brtr4d 5068 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑉‘𝑘) < (𝑉‘(𝑖 + 1))) |
209 | | eleq1w 2834 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 = 𝑖 → (𝑙 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑀))) |
210 | 209 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝑖 → (((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ↔ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (0..^𝑀)))) |
211 | | oveq1 7163 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑙 = 𝑖 → (𝑙 + 1) = (𝑖 + 1)) |
212 | 211 | fveq2d 6667 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 = 𝑖 → (𝑉‘(𝑙 + 1)) = (𝑉‘(𝑖 + 1))) |
213 | 212 | breq2d 5048 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝑖 → ((𝑉‘𝑘) < (𝑉‘(𝑙 + 1)) ↔ (𝑉‘𝑘) < (𝑉‘(𝑖 + 1)))) |
214 | 210, 213 | anbi12d 633 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝑖 → ((((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘𝑘) < (𝑉‘(𝑙 + 1))) ↔ (((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘𝑘) < (𝑉‘(𝑖 + 1))))) |
215 | | fveq2 6663 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝑖 → (𝑉‘𝑙) = (𝑉‘𝑖)) |
216 | 215 | breq2d 5048 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝑖 → ((𝑉‘𝑘) ≤ (𝑉‘𝑙) ↔ (𝑉‘𝑘) ≤ (𝑉‘𝑖))) |
217 | 214, 216 | imbi12d 348 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 𝑖 → (((((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘𝑘) < (𝑉‘(𝑙 + 1))) → (𝑉‘𝑘) ≤ (𝑉‘𝑙)) ↔ ((((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘𝑘) < (𝑉‘(𝑖 + 1))) → (𝑉‘𝑘) ≤ (𝑉‘𝑖)))) |
218 | | eleq1w 2834 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = 𝑘 → (ℎ ∈ (0..^𝑀) ↔ 𝑘 ∈ (0..^𝑀))) |
219 | 218 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = 𝑘 → ((𝜑 ∧ ℎ ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑘 ∈ (0..^𝑀)))) |
220 | 219 | anbi1d 632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝑘 → (((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ↔ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)))) |
221 | | fveq2 6663 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = 𝑘 → (𝑉‘ℎ) = (𝑉‘𝑘)) |
222 | 221 | breq1d 5046 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝑘 → ((𝑉‘ℎ) < (𝑉‘(𝑙 + 1)) ↔ (𝑉‘𝑘) < (𝑉‘(𝑙 + 1)))) |
223 | 220, 222 | anbi12d 633 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝑘 → ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) ↔ (((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘𝑘) < (𝑉‘(𝑙 + 1))))) |
224 | 221 | breq1d 5046 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝑘 → ((𝑉‘ℎ) ≤ (𝑉‘𝑙) ↔ (𝑉‘𝑘) ≤ (𝑉‘𝑙))) |
225 | 223, 224 | imbi12d 348 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = 𝑘 → (((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) → (𝑉‘ℎ) ≤ (𝑉‘𝑙)) ↔ ((((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘𝑘) < (𝑉‘(𝑙 + 1))) → (𝑉‘𝑘) ≤ (𝑉‘𝑙)))) |
226 | | elfzoelz 13100 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ ∈ (0..^𝑀) → ℎ ∈ ℤ) |
227 | 226 | ad3antlr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) → ℎ ∈ ℤ) |
228 | | elfzoelz 13100 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑙 ∈ (0..^𝑀) → 𝑙 ∈ ℤ) |
229 | 228 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) → 𝑙 ∈ ℤ) |
230 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) ∧ ¬ ℎ < (𝑙 + 1)) → (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) |
231 | 18 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑙 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ) |
232 | | fzofzp1 13196 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (0..^𝑀) → (𝑙 + 1) ∈ (0...𝑀)) |
233 | 232 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑙 ∈ (0..^𝑀)) → (𝑙 + 1) ∈ (0...𝑀)) |
234 | 231, 233 | ffvelrnd 6849 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑙 ∈ (0..^𝑀)) → (𝑉‘(𝑙 + 1)) ∈ ℝ) |
235 | 234 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) → (𝑉‘(𝑙 + 1)) ∈ ℝ) |
236 | 235 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ ℎ < (𝑙 + 1)) → (𝑉‘(𝑙 + 1)) ∈ ℝ) |
237 | 18 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ℎ ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ) |
238 | | elfzofz 13115 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℎ ∈ (0..^𝑀) → ℎ ∈ (0...𝑀)) |
239 | 238 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ ℎ ∈ (0..^𝑀)) → ℎ ∈ (0...𝑀)) |
240 | 237, 239 | ffvelrnd 6849 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ ℎ ∈ (0..^𝑀)) → (𝑉‘ℎ) ∈ ℝ) |
241 | 240 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ ℎ < (𝑙 + 1)) → (𝑉‘ℎ) ∈ ℝ) |
242 | 228 | zred 12139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (0..^𝑀) → 𝑙 ∈ ℝ) |
243 | | peano2re 10864 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ ℝ → (𝑙 + 1) ∈
ℝ) |
244 | 242, 243 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑙 ∈ (0..^𝑀) → (𝑙 + 1) ∈ ℝ) |
245 | 244 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ ℎ < (𝑙 + 1)) → (𝑙 + 1) ∈ ℝ) |
246 | 226 | zred 12139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℎ ∈ (0..^𝑀) → ℎ ∈ ℝ) |
247 | 246 | ad3antlr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ ℎ < (𝑙 + 1)) → ℎ ∈ ℝ) |
248 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ ℎ < (𝑙 + 1)) → ¬ ℎ < (𝑙 + 1)) |
249 | 245, 247,
248 | nltled 10841 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ ℎ < (𝑙 + 1)) → (𝑙 + 1) ≤ ℎ) |
250 | 228 | peano2zd 12142 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (0..^𝑀) → (𝑙 + 1) ∈ ℤ) |
251 | 250 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ℎ) → (𝑙 + 1) ∈ ℤ) |
252 | 226 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ℎ) → ℎ ∈ ℤ) |
253 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ℎ) → (𝑙 + 1) ≤ ℎ) |
254 | | eluz2 12301 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (ℎ ∈
(ℤ≥‘(𝑙 + 1)) ↔ ((𝑙 + 1) ∈ ℤ ∧ ℎ ∈ ℤ ∧ (𝑙 + 1) ≤ ℎ)) |
255 | 251, 252,
253, 254 | syl3anbrc 1340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ℎ) → ℎ ∈ (ℤ≥‘(𝑙 + 1))) |
256 | 255 | adantlll 717 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ℎ) → ℎ ∈ (ℤ≥‘(𝑙 + 1))) |
257 | | simplll 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝜑) |
258 | | 0zd 12045 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 0 ∈ ℤ) |
259 | | elfzoel2 13099 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (ℎ ∈ (0..^𝑀) → 𝑀 ∈ ℤ) |
260 | 259 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑀 ∈ ℤ) |
261 | | elfzelz 12969 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑖 ∈ ((𝑙 + 1)...ℎ) → 𝑖 ∈ ℤ) |
262 | 261 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑖 ∈ ℤ) |
263 | 258, 260,
262 | 3jca 1125 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈
ℤ)) |
264 | | 0red 10695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 0 ∈ ℝ) |
265 | 261 | zred 12139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑖 ∈ ((𝑙 + 1)...ℎ) → 𝑖 ∈ ℝ) |
266 | 265 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑖 ∈ ℝ) |
267 | 242 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑙 ∈ ℝ) |
268 | | elfzole1 13108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑙 ∈ (0..^𝑀) → 0 ≤ 𝑙) |
269 | 268 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 0 ≤ 𝑙) |
270 | 267, 243 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → (𝑙 + 1) ∈ ℝ) |
271 | 267 | ltp1d 11621 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑙 < (𝑙 + 1)) |
272 | | elfzle1 12972 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑖 ∈ ((𝑙 + 1)...ℎ) → (𝑙 + 1) ≤ 𝑖) |
273 | 272 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → (𝑙 + 1) ≤ 𝑖) |
274 | 267, 270,
266, 271, 273 | ltletrd 10851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑙 < 𝑖) |
275 | 264, 267,
266, 269, 274 | lelttrd 10849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 0 < 𝑖) |
276 | 264, 266,
275 | ltled 10839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 0 ≤ 𝑖) |
277 | 276 | adantll 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 0 ≤ 𝑖) |
278 | 265 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑖 ∈ ℝ) |
279 | 259 | zred 12139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ ∈ (0..^𝑀) → 𝑀 ∈ ℝ) |
280 | 279 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑀 ∈ ℝ) |
281 | 246 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → ℎ ∈ ℝ) |
282 | | elfzle2 12973 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑖 ∈ ((𝑙 + 1)...ℎ) → 𝑖 ≤ ℎ) |
283 | 282 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑖 ≤ ℎ) |
284 | | elfzolt2 13109 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (ℎ ∈ (0..^𝑀) → ℎ < 𝑀) |
285 | 284 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → ℎ < 𝑀) |
286 | 278, 281,
280, 283, 285 | lelttrd 10849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑖 < 𝑀) |
287 | 278, 280,
286 | ltled 10839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑖 ≤ 𝑀) |
288 | 287 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑖 ≤ 𝑀) |
289 | 263, 277,
288 | jca32 519 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (0 ≤
𝑖 ∧ 𝑖 ≤ 𝑀))) |
290 | | elfz2 12959 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (0 ≤
𝑖 ∧ 𝑖 ≤ 𝑀))) |
291 | 289, 290 | sylibr 237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑖 ∈ (0...𝑀)) |
292 | 291 | adantlll 717 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → 𝑖 ∈ (0...𝑀)) |
293 | 257, 292,
19 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → (𝑉‘𝑖) ∈ ℝ) |
294 | 293 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ℎ) ∧ 𝑖 ∈ ((𝑙 + 1)...ℎ)) → (𝑉‘𝑖) ∈ ℝ) |
295 | | simplll 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝜑) |
296 | | 0zd 12045 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 0 ∈
ℤ) |
297 | | elfzelz 12969 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑖 ∈ ((𝑙 + 1)...(ℎ − 1)) → 𝑖 ∈ ℤ) |
298 | 297 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑖 ∈ ℤ) |
299 | | 0red 10695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 0 ∈
ℝ) |
300 | 298 | zred 12139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑖 ∈ ℝ) |
301 | 242 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑙 ∈ ℝ) |
302 | 268 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 0 ≤ 𝑙) |
303 | 301, 243 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → (𝑙 + 1) ∈ ℝ) |
304 | 301 | ltp1d 11621 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑙 < (𝑙 + 1)) |
305 | | elfzle1 12972 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑖 ∈ ((𝑙 + 1)...(ℎ − 1)) → (𝑙 + 1) ≤ 𝑖) |
306 | 305 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → (𝑙 + 1) ≤ 𝑖) |
307 | 301, 303,
300, 304, 306 | ltletrd 10851 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑙 < 𝑖) |
308 | 299, 301,
300, 302, 307 | lelttrd 10849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 0 < 𝑖) |
309 | 299, 300,
308 | ltled 10839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 0 ≤ 𝑖) |
310 | | eluz2 12301 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑖 ∈
(ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 0 ≤
𝑖)) |
311 | 296, 298,
309, 310 | syl3anbrc 1340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑖 ∈
(ℤ≥‘0)) |
312 | 311 | adantll 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑖 ∈
(ℤ≥‘0)) |
313 | | elfzoel2 13099 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑙 ∈ (0..^𝑀) → 𝑀 ∈ ℤ) |
314 | 313 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑀 ∈ ℤ) |
315 | 297 | zred 12139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑖 ∈ ((𝑙 + 1)...(ℎ − 1)) → 𝑖 ∈ ℝ) |
316 | 315 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑖 ∈ ℝ) |
317 | | peano2rem 11004 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ ∈ ℝ → (ℎ − 1) ∈
ℝ) |
318 | 246, 317 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (ℎ ∈ (0..^𝑀) → (ℎ − 1) ∈ ℝ) |
319 | 318 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → (ℎ − 1) ∈ ℝ) |
320 | 279 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑀 ∈ ℝ) |
321 | | elfzle2 12973 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑖 ∈ ((𝑙 + 1)...(ℎ − 1)) → 𝑖 ≤ (ℎ − 1)) |
322 | 321 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑖 ≤ (ℎ − 1)) |
323 | 246 | ltm1d 11623 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (ℎ ∈ (0..^𝑀) → (ℎ − 1) < ℎ) |
324 | 318, 246,
279, 323, 284 | lttrd 10852 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (ℎ ∈ (0..^𝑀) → (ℎ − 1) < 𝑀) |
325 | 324 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → (ℎ − 1) < 𝑀) |
326 | 316, 319,
320, 322, 325 | lelttrd 10849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑖 < 𝑀) |
327 | 326 | adantll 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑖 < 𝑀) |
328 | 327 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑖 < 𝑀) |
329 | | elfzo2 13103 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 ∈ (0..^𝑀) ↔ (𝑖 ∈ (ℤ≥‘0)
∧ 𝑀 ∈ ℤ
∧ 𝑖 < 𝑀)) |
330 | 312, 314,
328, 329 | syl3anbrc 1340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → 𝑖 ∈ (0..^𝑀)) |
331 | 169, 19 | sylan2 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ∈ ℝ) |
332 | 41 | simprd 499 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
333 | 332 | r19.21bi 3137 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) < (𝑉‘(𝑖 + 1))) |
334 | 331, 190,
333 | ltled 10839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑉‘𝑖) ≤ (𝑉‘(𝑖 + 1))) |
335 | 295, 330,
334 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → (𝑉‘𝑖) ≤ (𝑉‘(𝑖 + 1))) |
336 | 335 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ℎ) ∧ 𝑖 ∈ ((𝑙 + 1)...(ℎ − 1))) → (𝑉‘𝑖) ≤ (𝑉‘(𝑖 + 1))) |
337 | 256, 294,
336 | monoord 13463 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ℎ) → (𝑉‘(𝑙 + 1)) ≤ (𝑉‘ℎ)) |
338 | 249, 337 | syldan 594 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ ℎ < (𝑙 + 1)) → (𝑉‘(𝑙 + 1)) ≤ (𝑉‘ℎ)) |
339 | 236, 241,
338 | lensymd 10842 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ ℎ < (𝑙 + 1)) → ¬ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) |
340 | 339 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) ∧ ¬ ℎ < (𝑙 + 1)) → ¬ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) |
341 | 230, 340 | condan 817 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) → ℎ < (𝑙 + 1)) |
342 | | zleltp1 12085 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℎ ∈ ℤ ∧ 𝑙 ∈ ℤ) → (ℎ ≤ 𝑙 ↔ ℎ < (𝑙 + 1))) |
343 | 227, 229,
342 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) → (ℎ ≤ 𝑙 ↔ ℎ < (𝑙 + 1))) |
344 | 341, 343 | mpbird 260 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) → ℎ ≤ 𝑙) |
345 | | eluz2 12301 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈
(ℤ≥‘ℎ) ↔ (ℎ ∈ ℤ ∧ 𝑙 ∈ ℤ ∧ ℎ ≤ 𝑙)) |
346 | 227, 229,
344, 345 | syl3anbrc 1340 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) → 𝑙 ∈ (ℤ≥‘ℎ)) |
347 | 18 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑉:(0...𝑀)⟶ℝ) |
348 | | 0zd 12045 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...𝑙)) → 0 ∈ ℤ) |
349 | 259 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑀 ∈ ℤ) |
350 | | elfzelz 12969 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (ℎ...𝑙) → 𝑖 ∈ ℤ) |
351 | 350 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑖 ∈ ℤ) |
352 | 348, 349,
351 | 3jca 1125 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...𝑙)) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈
ℤ)) |
353 | | 0red 10695 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → 0 ∈ ℝ) |
354 | 246 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → ℎ ∈ ℝ) |
355 | 350 | zred 12139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (ℎ...𝑙) → 𝑖 ∈ ℝ) |
356 | 355 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑖 ∈ ℝ) |
357 | | elfzole1 13108 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (ℎ ∈ (0..^𝑀) → 0 ≤ ℎ) |
358 | 357 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → 0 ≤ ℎ) |
359 | | elfzle1 12972 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 ∈ (ℎ...𝑙) → ℎ ≤ 𝑖) |
360 | 359 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → ℎ ≤ 𝑖) |
361 | 353, 354,
356, 358, 360 | letrd 10848 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → 0 ≤ 𝑖) |
362 | 361 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...𝑙)) → 0 ≤ 𝑖) |
363 | 355 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑖 ∈ ℝ) |
364 | 313 | zred 12139 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑙 ∈ (0..^𝑀) → 𝑀 ∈ ℝ) |
365 | 364 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑀 ∈ ℝ) |
366 | 242 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑙 ∈ ℝ) |
367 | | elfzle2 12973 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 ∈ (ℎ...𝑙) → 𝑖 ≤ 𝑙) |
368 | 367 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑖 ≤ 𝑙) |
369 | | elfzolt2 13109 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (0..^𝑀) → 𝑙 < 𝑀) |
370 | 369 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑙 < 𝑀) |
371 | 363, 366,
365, 368, 370 | lelttrd 10849 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑖 < 𝑀) |
372 | 363, 365,
371 | ltled 10839 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑖 ≤ 𝑀) |
373 | 372 | adantll 713 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑖 ≤ 𝑀) |
374 | 352, 362,
373 | jca32 519 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...𝑙)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (0 ≤
𝑖 ∧ 𝑖 ≤ 𝑀))) |
375 | 374, 290 | sylibr 237 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((ℎ ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑖 ∈ (0...𝑀)) |
376 | 375 | adantlll 717 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...𝑙)) → 𝑖 ∈ (0...𝑀)) |
377 | 347, 376 | ffvelrnd 6849 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...𝑙)) → (𝑉‘𝑖) ∈ ℝ) |
378 | 377 | adantlr 714 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (ℎ...𝑙)) → (𝑉‘𝑖) ∈ ℝ) |
379 | | simp-4l 782 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝜑) |
380 | | 0zd 12045 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 0 ∈
ℤ) |
381 | | elfzelz 12969 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (ℎ...(𝑙 − 1)) → 𝑖 ∈ ℤ) |
382 | 381 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑖 ∈ ℤ) |
383 | | 0red 10695 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 0 ∈
ℝ) |
384 | 246 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → ℎ ∈ ℝ) |
385 | 382 | zred 12139 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑖 ∈ ℝ) |
386 | 357 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 0 ≤ ℎ) |
387 | | elfzle1 12972 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (ℎ...(𝑙 − 1)) → ℎ ≤ 𝑖) |
388 | 387 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → ℎ ≤ 𝑖) |
389 | 383, 384,
385, 386, 388 | letrd 10848 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 0 ≤ 𝑖) |
390 | 380, 382,
389, 310 | syl3anbrc 1340 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ℎ ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑖 ∈
(ℤ≥‘0)) |
391 | 390 | adantll 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑖 ∈
(ℤ≥‘0)) |
392 | 391 | ad4ant14 751 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑖 ∈
(ℤ≥‘0)) |
393 | 313 | ad3antlr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑀 ∈ ℤ) |
394 | 381 | zred 12139 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑖 ∈ (ℎ...(𝑙 − 1)) → 𝑖 ∈ ℝ) |
395 | 394 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑖 ∈ ℝ) |
396 | 242 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑙 ∈ ℝ) |
397 | 364 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑀 ∈ ℝ) |
398 | | elfzle2 12973 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑖 ∈ (ℎ...(𝑙 − 1)) → 𝑖 ≤ (𝑙 − 1)) |
399 | 398 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑖 ≤ (𝑙 − 1)) |
400 | | zltlem1 12087 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑖 ∈ ℤ ∧ 𝑙 ∈ ℤ) → (𝑖 < 𝑙 ↔ 𝑖 ≤ (𝑙 − 1))) |
401 | 381, 228,
400 | syl2anr 599 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → (𝑖 < 𝑙 ↔ 𝑖 ≤ (𝑙 − 1))) |
402 | 399, 401 | mpbird 260 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑖 < 𝑙) |
403 | 369 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑙 < 𝑀) |
404 | 395, 396,
397, 402, 403 | lttrd 10852 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑖 < 𝑀) |
405 | 404 | adantll 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑖 < 𝑀) |
406 | 405 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑖 < 𝑀) |
407 | 392, 393,
406, 329 | syl3anbrc 1340 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → 𝑖 ∈ (0..^𝑀)) |
408 | 379, 407,
334 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (ℎ...(𝑙 − 1))) → (𝑉‘𝑖) ≤ (𝑉‘(𝑖 + 1))) |
409 | 346, 378,
408 | monoord 13463 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) → (𝑉‘ℎ) ≤ (𝑉‘𝑙)) |
410 | 225, 409 | chvarvv 2005 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘𝑘) < (𝑉‘(𝑙 + 1))) → (𝑉‘𝑘) ≤ (𝑉‘𝑙)) |
411 | 217, 410 | chvarvv 2005 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉‘𝑘) < (𝑉‘(𝑖 + 1))) → (𝑉‘𝑘) ≤ (𝑉‘𝑖)) |
412 | 110, 112,
208, 411 | syl21anc 836 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑉‘𝑘) ≤ (𝑉‘𝑖)) |
413 | 107, 112 | jca 515 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝜑 ∧ 𝑖 ∈ (0..^𝑀))) |
414 | 110, 149 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘(𝑘 + 1)) ∈ ℝ) |
415 | 179 | simpld 498 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝑄‘𝑖) ≤ (𝑆‘𝐽)) |
416 | 176, 143,
138, 415, 164 | lelttrd 10849 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑄‘𝑖) < (𝑆‘(𝐽 + 1))) |
417 | 166 | simprd 499 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝑘 + 1))) |
418 | 176, 138,
414, 416, 417 | ltletrd 10851 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑄‘𝑖) < (𝑄‘(𝑘 + 1))) |
419 | 176, 414,
118, 418 | ltadd2dd 10850 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑋 + (𝑄‘𝑖)) < (𝑋 + (𝑄‘(𝑘 + 1)))) |
420 | 175 | oveq2d 7172 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑋 + (𝑄‘𝑖)) = (𝑋 + ((𝑉‘𝑖) − 𝑋))) |
421 | 107, 172,
19 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝑉‘𝑖) ∈ ℝ) |
422 | 421 | recnd 10720 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑉‘𝑖) ∈ ℂ) |
423 | 184, 422 | pncan3d 11051 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑋 + ((𝑉‘𝑖) − 𝑋)) = (𝑉‘𝑖)) |
424 | 420, 423 | eqtr2d 2794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑉‘𝑖) = (𝑋 + (𝑄‘𝑖))) |
425 | 22 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) → 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋))) |
426 | | fveq2 6663 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑖 = (𝑘 + 1) → (𝑉‘𝑖) = (𝑉‘(𝑘 + 1))) |
427 | 426 | oveq1d 7171 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = (𝑘 + 1) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘(𝑘 + 1)) − 𝑋)) |
428 | 427 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) ∧ 𝑖 = (𝑘 + 1)) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘(𝑘 + 1)) − 𝑋)) |
429 | 18 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ) |
430 | 429, 148 | ffvelrnd 6849 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) → (𝑉‘(𝑘 + 1)) ∈ ℝ) |
431 | 13 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
432 | 430, 431 | resubcld 11119 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) → ((𝑉‘(𝑘 + 1)) − 𝑋) ∈ ℝ) |
433 | 425, 428,
148, 432 | fvmptd 6771 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄‘(𝑘 + 1)) = ((𝑉‘(𝑘 + 1)) − 𝑋)) |
434 | 107, 109,
433 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑄‘(𝑘 + 1)) = ((𝑉‘(𝑘 + 1)) − 𝑋)) |
435 | 434 | oveq2d 7172 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑋 + (𝑄‘(𝑘 + 1))) = (𝑋 + ((𝑉‘(𝑘 + 1)) − 𝑋))) |
436 | 110, 430 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝑉‘(𝑘 + 1)) ∈ ℝ) |
437 | 436 | recnd 10720 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑉‘(𝑘 + 1)) ∈ ℂ) |
438 | 184, 437 | pncan3d 11051 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (𝑋 + ((𝑉‘(𝑘 + 1)) − 𝑋)) = (𝑉‘(𝑘 + 1))) |
439 | 435, 438 | eqtr2d 2794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (𝑉‘(𝑘 + 1)) = (𝑋 + (𝑄‘(𝑘 + 1)))) |
440 | 419, 424,
439 | 3brtr4d 5068 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (𝑉‘𝑖) < (𝑉‘(𝑘 + 1))) |
441 | | eleq1w 2834 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 = 𝑘 → (𝑙 ∈ (0..^𝑀) ↔ 𝑘 ∈ (0..^𝑀))) |
442 | 441 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝑘 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑘 ∈ (0..^𝑀)))) |
443 | | oveq1 7163 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑙 = 𝑘 → (𝑙 + 1) = (𝑘 + 1)) |
444 | 443 | fveq2d 6667 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 = 𝑘 → (𝑉‘(𝑙 + 1)) = (𝑉‘(𝑘 + 1))) |
445 | 444 | breq2d 5048 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝑘 → ((𝑉‘𝑖) < (𝑉‘(𝑙 + 1)) ↔ (𝑉‘𝑖) < (𝑉‘(𝑘 + 1)))) |
446 | 442, 445 | anbi12d 633 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝑘 → ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘𝑖) < (𝑉‘(𝑙 + 1))) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑘 ∈ (0..^𝑀)) ∧ (𝑉‘𝑖) < (𝑉‘(𝑘 + 1))))) |
447 | | fveq2 6663 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝑘 → (𝑉‘𝑙) = (𝑉‘𝑘)) |
448 | 447 | breq2d 5048 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝑘 → ((𝑉‘𝑖) ≤ (𝑉‘𝑙) ↔ (𝑉‘𝑖) ≤ (𝑉‘𝑘))) |
449 | 446, 448 | imbi12d 348 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 𝑘 → (((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘𝑖) < (𝑉‘(𝑙 + 1))) → (𝑉‘𝑖) ≤ (𝑉‘𝑙)) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑘 ∈ (0..^𝑀)) ∧ (𝑉‘𝑖) < (𝑉‘(𝑘 + 1))) → (𝑉‘𝑖) ≤ (𝑉‘𝑘)))) |
450 | | eleq1w 2834 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℎ = 𝑖 → (ℎ ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑀))) |
451 | 450 | anbi2d 631 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = 𝑖 → ((𝜑 ∧ ℎ ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑖 ∈ (0..^𝑀)))) |
452 | 451 | anbi1d 632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝑖 → (((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ↔ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)))) |
453 | | fveq2 6663 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = 𝑖 → (𝑉‘ℎ) = (𝑉‘𝑖)) |
454 | 453 | breq1d 5046 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = 𝑖 → ((𝑉‘ℎ) < (𝑉‘(𝑙 + 1)) ↔ (𝑉‘𝑖) < (𝑉‘(𝑙 + 1)))) |
455 | 452, 454 | anbi12d 633 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝑖 → ((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) ↔ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘𝑖) < (𝑉‘(𝑙 + 1))))) |
456 | 453 | breq1d 5046 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ℎ = 𝑖 → ((𝑉‘ℎ) ≤ (𝑉‘𝑙) ↔ (𝑉‘𝑖) ≤ (𝑉‘𝑙))) |
457 | 455, 456 | imbi12d 348 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ = 𝑖 → (((((𝜑 ∧ ℎ ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘ℎ) < (𝑉‘(𝑙 + 1))) → (𝑉‘ℎ) ≤ (𝑉‘𝑙)) ↔ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘𝑖) < (𝑉‘(𝑙 + 1))) → (𝑉‘𝑖) ≤ (𝑉‘𝑙)))) |
458 | 457, 409 | chvarvv 2005 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉‘𝑖) < (𝑉‘(𝑙 + 1))) → (𝑉‘𝑖) ≤ (𝑉‘𝑙)) |
459 | 449, 458 | chvarvv 2005 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑘 ∈ (0..^𝑀)) ∧ (𝑉‘𝑖) < (𝑉‘(𝑘 + 1))) → (𝑉‘𝑖) ≤ (𝑉‘𝑘)) |
460 | 413, 109,
440, 459 | syl21anc 836 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (𝑉‘𝑖) ≤ (𝑉‘𝑘)) |
461 | 117, 421 | letri3d 10833 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → ((𝑉‘𝑘) = (𝑉‘𝑖) ↔ ((𝑉‘𝑘) ≤ (𝑉‘𝑖) ∧ (𝑉‘𝑖) ≤ (𝑉‘𝑘)))) |
462 | 412, 460,
461 | mpbir2and 712 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → (𝑉‘𝑘) = (𝑉‘𝑖)) |
463 | 7, 2, 8 | fourierdlem34 43184 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑉:(0...𝑀)–1-1→ℝ) |
464 | 107, 463 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → 𝑉:(0...𝑀)–1-1→ℝ) |
465 | | f1fveq 7018 |
. . . . . . . . . . . . . . 15
⊢ ((𝑉:(0...𝑀)–1-1→ℝ ∧ (𝑘 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀))) → ((𝑉‘𝑘) = (𝑉‘𝑖) ↔ 𝑘 = 𝑖)) |
466 | 464, 115,
172, 465 | syl12anc 835 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → ((𝑉‘𝑘) = (𝑉‘𝑖) ↔ 𝑘 = 𝑖)) |
467 | 462, 466 | mpbid 235 |
. . . . . . . . . . . . 13
⊢ (𝜒 → 𝑘 = 𝑖) |
468 | 104, 467 | sylbir 238 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) → 𝑘 = 𝑖) |
469 | 468 | ex 416 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) → (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))) → 𝑘 = 𝑖)) |
470 | | simpl 486 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑘 = 𝑖) → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
471 | | fveq2 6663 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑖 → (𝑄‘𝑘) = (𝑄‘𝑖)) |
472 | | oveq1 7163 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1)) |
473 | 472 | fveq2d 6667 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑖 → (𝑄‘(𝑘 + 1)) = (𝑄‘(𝑖 + 1))) |
474 | 471, 473 | oveq12d 7174 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑖 → ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
475 | 474 | eqcomd 2764 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑖 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) |
476 | 475 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑘 = 𝑖) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) |
477 | 470, 476 | sseqtrd 3934 |
. . . . . . . . . . . . 13
⊢ ((((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑘 = 𝑖) → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) |
478 | 477 | ex 416 |
. . . . . . . . . . . 12
⊢ (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑘 = 𝑖 → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))))) |
479 | 478 | ad2antlr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑘 = 𝑖 → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))))) |
480 | 469, 479 | impbid 215 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) → (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ 𝑘 = 𝑖)) |
481 | 480 | ralrimiva 3113 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑘 ∈ (0..^𝑀)(((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ 𝑘 = 𝑖)) |
482 | 481 | ex 416 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ∀𝑘 ∈ (0..^𝑀)(((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ 𝑘 = 𝑖))) |
483 | 482 | reximdva 3198 |
. . . . . . 7
⊢ (𝜑 → (∃𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)∀𝑘 ∈ (0..^𝑀)(((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ 𝑘 = 𝑖))) |
484 | 103, 483 | mpd 15 |
. . . . . 6
⊢ (𝜑 → ∃𝑖 ∈ (0..^𝑀)∀𝑘 ∈ (0..^𝑀)(((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ 𝑘 = 𝑖)) |
485 | | reu6 3642 |
. . . . . 6
⊢
(∃!𝑘 ∈
(0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)∀𝑘 ∈ (0..^𝑀)(((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ 𝑘 = 𝑖)) |
486 | 484, 485 | sylibr 237 |
. . . . 5
⊢ (𝜑 → ∃!𝑘 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) |
487 | | fveq2 6663 |
. . . . . . . 8
⊢ (𝑖 = 𝑘 → (𝑄‘𝑖) = (𝑄‘𝑘)) |
488 | | oveq1 7163 |
. . . . . . . . 9
⊢ (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1)) |
489 | 488 | fveq2d 6667 |
. . . . . . . 8
⊢ (𝑖 = 𝑘 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑘 + 1))) |
490 | 487, 489 | oveq12d 7174 |
. . . . . . 7
⊢ (𝑖 = 𝑘 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) |
491 | 490 | sseq2d 3926 |
. . . . . 6
⊢ (𝑖 = 𝑘 → (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1))))) |
492 | 491 | cbvreuvw 3363 |
. . . . 5
⊢
(∃!𝑖 ∈
(0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ ∃!𝑘 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑘)(,)(𝑄‘(𝑘 + 1)))) |
493 | 486, 492 | sylibr 237 |
. . . 4
⊢ (𝜑 → ∃!𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
494 | | riotacl 7131 |
. . . 4
⊢
(∃!𝑖 ∈
(0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (℩𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (0..^𝑀)) |
495 | 493, 494 | syl 17 |
. . 3
⊢ (𝜑 → (℩𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (0..^𝑀)) |
496 | 1, 495 | eqeltrid 2856 |
. 2
⊢ (𝜑 → 𝑈 ∈ (0..^𝑀)) |
497 | 1 | eqcomi 2767 |
. . . 4
⊢
(℩𝑖
∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = 𝑈 |
498 | 497 | a1i 11 |
. . 3
⊢ (𝜑 → (℩𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = 𝑈) |
499 | | fveq2 6663 |
. . . . . . 7
⊢ (𝑖 = 𝑈 → (𝑄‘𝑖) = (𝑄‘𝑈)) |
500 | | oveq1 7163 |
. . . . . . . 8
⊢ (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1)) |
501 | 500 | fveq2d 6667 |
. . . . . . 7
⊢ (𝑖 = 𝑈 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑈 + 1))) |
502 | 499, 501 | oveq12d 7174 |
. . . . . 6
⊢ (𝑖 = 𝑈 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘𝑈)(,)(𝑄‘(𝑈 + 1)))) |
503 | 502 | sseq2d 3926 |
. . . . 5
⊢ (𝑖 = 𝑈 → (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑈)(,)(𝑄‘(𝑈 + 1))))) |
504 | 503 | riota2 7139 |
. . . 4
⊢ ((𝑈 ∈ (0..^𝑀) ∧ ∃!𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑈)(,)(𝑄‘(𝑈 + 1))) ↔ (℩𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = 𝑈)) |
505 | 496, 493,
504 | syl2anc 587 |
. . 3
⊢ (𝜑 → (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑈)(,)(𝑄‘(𝑈 + 1))) ↔ (℩𝑖 ∈ (0..^𝑀)((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = 𝑈)) |
506 | 498, 505 | mpbird 260 |
. 2
⊢ (𝜑 → ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑈)(,)(𝑄‘(𝑈 + 1)))) |
507 | 496, 506 | jca 515 |
1
⊢ (𝜑 → (𝑈 ∈ (0..^𝑀) ∧ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄‘𝑈)(,)(𝑄‘(𝑈 + 1))))) |