Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem50 Structured version   Visualization version   GIF version

Theorem fourierdlem50 43587
Description: Continuity of 𝑂 and its limits with respect to the 𝑆 partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem50.xre (𝜑𝑋 ∈ ℝ)
fourierdlem50.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem50.m (𝜑𝑀 ∈ ℕ)
fourierdlem50.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem50.a (𝜑𝐴 ∈ ℝ)
fourierdlem50.b (𝜑𝐵 ∈ ℝ)
fourierdlem50.altb (𝜑𝐴 < 𝐵)
fourierdlem50.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem50.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem50.t 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))
fourierdlem50.n 𝑁 = ((♯‘𝑇) − 1)
fourierdlem50.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem50.j (𝜑𝐽 ∈ (0..^𝑁))
fourierdlem50.u 𝑈 = (𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
fourierdlem50.ch (𝜒 ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))))
Assertion
Ref Expression
fourierdlem50 (𝜑 → (𝑈 ∈ (0..^𝑀) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
Distinct variable groups:   𝑖,𝐽,𝑘   𝑖,𝑀,𝑘   𝑚,𝑀,𝑝,𝑖   𝑓,𝑁   𝑄,𝑖,𝑘   𝑆,𝑓   𝑆,𝑖,𝑘   𝑇,𝑓   𝑈,𝑖   𝑖,𝑉,𝑘   𝑉,𝑝   𝑖,𝑋,𝑘   𝑚,𝑋,𝑝   𝜑,𝑓   𝜑,𝑖,𝑘
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝜒(𝑓,𝑖,𝑘,𝑚,𝑝)   𝐴(𝑓,𝑖,𝑘,𝑚,𝑝)   𝐵(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑃(𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑓,𝑚,𝑝)   𝑆(𝑚,𝑝)   𝑇(𝑖,𝑘,𝑚,𝑝)   𝑈(𝑓,𝑘,𝑚,𝑝)   𝐽(𝑓,𝑚,𝑝)   𝑀(𝑓)   𝑁(𝑖,𝑘,𝑚,𝑝)   𝑉(𝑓,𝑚)   𝑋(𝑓)

Proof of Theorem fourierdlem50
Dummy variables 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem50.u . . 3 𝑈 = (𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
2 fourierdlem50.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3 fourierdlem50.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
4 fourierdlem50.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
5 fourierdlem50.altb . . . . . . . . 9 (𝜑𝐴 < 𝐵)
63, 4, 5ltled 11053 . . . . . . . 8 (𝜑𝐴𝐵)
7 fourierdlem50.p . . . . . . . . . . . . 13 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
8 fourierdlem50.v . . . . . . . . . . . . 13 (𝜑𝑉 ∈ (𝑃𝑀))
97, 2, 8fourierdlem15 43553 . . . . . . . . . . . 12 (𝜑𝑉:(0...𝑀)⟶((-π + 𝑋)[,](π + 𝑋)))
10 pire 25520 . . . . . . . . . . . . . . . 16 π ∈ ℝ
1110renegcli 11212 . . . . . . . . . . . . . . 15 -π ∈ ℝ
1211a1i 11 . . . . . . . . . . . . . 14 (𝜑 → -π ∈ ℝ)
13 fourierdlem50.xre . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ℝ)
1412, 13readdcld 10935 . . . . . . . . . . . . 13 (𝜑 → (-π + 𝑋) ∈ ℝ)
1510a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℝ)
1615, 13readdcld 10935 . . . . . . . . . . . . 13 (𝜑 → (π + 𝑋) ∈ ℝ)
1714, 16iccssred 13095 . . . . . . . . . . . 12 (𝜑 → ((-π + 𝑋)[,](π + 𝑋)) ⊆ ℝ)
189, 17fssd 6602 . . . . . . . . . . 11 (𝜑𝑉:(0...𝑀)⟶ℝ)
1918ffvelrnda 6943 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
2013adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
2119, 20resubcld 11333 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
22 fourierdlem50.q . . . . . . . . 9 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
2321, 22fmptd 6970 . . . . . . . 8 (𝜑𝑄:(0...𝑀)⟶ℝ)
2422a1i 11 . . . . . . . . . . 11 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
25 fveq2 6756 . . . . . . . . . . . . 13 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
2625oveq1d 7270 . . . . . . . . . . . 12 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
2726adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
28 nnssnn0 12166 . . . . . . . . . . . . . . 15 ℕ ⊆ ℕ0
2928a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℕ ⊆ ℕ0)
30 nn0uz 12549 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
3129, 30sseqtrdi 3967 . . . . . . . . . . . . 13 (𝜑 → ℕ ⊆ (ℤ‘0))
3231, 2sseldd 3918 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘0))
33 eluzfz1 13192 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
3432, 33syl 17 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
3518, 34ffvelrnd 6944 . . . . . . . . . . . 12 (𝜑 → (𝑉‘0) ∈ ℝ)
3635, 13resubcld 11333 . . . . . . . . . . 11 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
3724, 27, 34, 36fvmptd 6864 . . . . . . . . . 10 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
387fourierdlem2 43540 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
392, 38syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
408, 39mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
4140simprd 495 . . . . . . . . . . . . 13 (𝜑 → (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
4241simpld 494 . . . . . . . . . . . 12 (𝜑 → ((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)))
4342simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑉‘0) = (-π + 𝑋))
4443oveq1d 7270 . . . . . . . . . 10 (𝜑 → ((𝑉‘0) − 𝑋) = ((-π + 𝑋) − 𝑋))
4512recnd 10934 . . . . . . . . . . 11 (𝜑 → -π ∈ ℂ)
4613recnd 10934 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
4745, 46pncand 11263 . . . . . . . . . 10 (𝜑 → ((-π + 𝑋) − 𝑋) = -π)
4837, 44, 473eqtrd 2782 . . . . . . . . 9 (𝜑 → (𝑄‘0) = -π)
4912rexrd 10956 . . . . . . . . . 10 (𝜑 → -π ∈ ℝ*)
5015rexrd 10956 . . . . . . . . . 10 (𝜑 → π ∈ ℝ*)
51 fourierdlem50.ab . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
523leidd 11471 . . . . . . . . . . . 12 (𝜑𝐴𝐴)
533, 4, 3, 52, 6eliccd 42932 . . . . . . . . . . 11 (𝜑𝐴 ∈ (𝐴[,]𝐵))
5451, 53sseldd 3918 . . . . . . . . . 10 (𝜑𝐴 ∈ (-π[,]π))
55 iccgelb 13064 . . . . . . . . . 10 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → -π ≤ 𝐴)
5649, 50, 54, 55syl3anc 1369 . . . . . . . . 9 (𝜑 → -π ≤ 𝐴)
5748, 56eqbrtrd 5092 . . . . . . . 8 (𝜑 → (𝑄‘0) ≤ 𝐴)
584leidd 11471 . . . . . . . . . . . 12 (𝜑𝐵𝐵)
593, 4, 4, 6, 58eliccd 42932 . . . . . . . . . . 11 (𝜑𝐵 ∈ (𝐴[,]𝐵))
6051, 59sseldd 3918 . . . . . . . . . 10 (𝜑𝐵 ∈ (-π[,]π))
61 iccleub 13063 . . . . . . . . . 10 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐵 ∈ (-π[,]π)) → 𝐵 ≤ π)
6249, 50, 60, 61syl3anc 1369 . . . . . . . . 9 (𝜑𝐵 ≤ π)
63 fveq2 6756 . . . . . . . . . . . . 13 (𝑖 = 𝑀 → (𝑉𝑖) = (𝑉𝑀))
6463oveq1d 7270 . . . . . . . . . . . 12 (𝑖 = 𝑀 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑀) − 𝑋))
6564adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 = 𝑀) → ((𝑉𝑖) − 𝑋) = ((𝑉𝑀) − 𝑋))
66 eluzfz2 13193 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
6732, 66syl 17 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑀))
6818, 67ffvelrnd 6944 . . . . . . . . . . . 12 (𝜑 → (𝑉𝑀) ∈ ℝ)
6968, 13resubcld 11333 . . . . . . . . . . 11 (𝜑 → ((𝑉𝑀) − 𝑋) ∈ ℝ)
7024, 65, 67, 69fvmptd 6864 . . . . . . . . . 10 (𝜑 → (𝑄𝑀) = ((𝑉𝑀) − 𝑋))
7142simprd 495 . . . . . . . . . . 11 (𝜑 → (𝑉𝑀) = (π + 𝑋))
7271oveq1d 7270 . . . . . . . . . 10 (𝜑 → ((𝑉𝑀) − 𝑋) = ((π + 𝑋) − 𝑋))
7315recnd 10934 . . . . . . . . . . 11 (𝜑 → π ∈ ℂ)
7473, 46pncand 11263 . . . . . . . . . 10 (𝜑 → ((π + 𝑋) − 𝑋) = π)
7570, 72, 743eqtrrd 2783 . . . . . . . . 9 (𝜑 → π = (𝑄𝑀))
7662, 75breqtrd 5096 . . . . . . . 8 (𝜑𝐵 ≤ (𝑄𝑀))
77 fourierdlem50.j . . . . . . . 8 (𝜑𝐽 ∈ (0..^𝑁))
78 fourierdlem50.t . . . . . . . 8 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))
79 prfi 9019 . . . . . . . . . . . 12 {𝐴, 𝐵} ∈ Fin
8079a1i 11 . . . . . . . . . . 11 (𝜑 → {𝐴, 𝐵} ∈ Fin)
81 fzfid 13621 . . . . . . . . . . . . 13 (𝜑 → (0...𝑀) ∈ Fin)
8222rnmptfi 42596 . . . . . . . . . . . . 13 ((0...𝑀) ∈ Fin → ran 𝑄 ∈ Fin)
8381, 82syl 17 . . . . . . . . . . . 12 (𝜑 → ran 𝑄 ∈ Fin)
84 infi 8972 . . . . . . . . . . . 12 (ran 𝑄 ∈ Fin → (ran 𝑄 ∩ (𝐴(,)𝐵)) ∈ Fin)
8583, 84syl 17 . . . . . . . . . . 11 (𝜑 → (ran 𝑄 ∩ (𝐴(,)𝐵)) ∈ Fin)
86 unfi 8917 . . . . . . . . . . 11 (({𝐴, 𝐵} ∈ Fin ∧ (ran 𝑄 ∩ (𝐴(,)𝐵)) ∈ Fin) → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ∈ Fin)
8780, 85, 86syl2anc 583 . . . . . . . . . 10 (𝜑 → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ∈ Fin)
8878, 87eqeltrid 2843 . . . . . . . . 9 (𝜑𝑇 ∈ Fin)
893, 4jca 511 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
90 prssg 4749 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ {𝐴, 𝐵} ⊆ ℝ))
913, 4, 90syl2anc 583 . . . . . . . . . . . 12 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ {𝐴, 𝐵} ⊆ ℝ))
9289, 91mpbid 231 . . . . . . . . . . 11 (𝜑 → {𝐴, 𝐵} ⊆ ℝ)
93 inss2 4160 . . . . . . . . . . . . 13 (ran 𝑄 ∩ (𝐴(,)𝐵)) ⊆ (𝐴(,)𝐵)
94 ioossre 13069 . . . . . . . . . . . . 13 (𝐴(,)𝐵) ⊆ ℝ
9593, 94sstri 3926 . . . . . . . . . . . 12 (ran 𝑄 ∩ (𝐴(,)𝐵)) ⊆ ℝ
9695a1i 11 . . . . . . . . . . 11 (𝜑 → (ran 𝑄 ∩ (𝐴(,)𝐵)) ⊆ ℝ)
9792, 96unssd 4116 . . . . . . . . . 10 (𝜑 → ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) ⊆ ℝ)
9878, 97eqsstrid 3965 . . . . . . . . 9 (𝜑𝑇 ⊆ ℝ)
99 fourierdlem50.s . . . . . . . . 9 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
100 fourierdlem50.n . . . . . . . . 9 𝑁 = ((♯‘𝑇) − 1)
10188, 98, 99, 100fourierdlem36 43574 . . . . . . . 8 (𝜑𝑆 Isom < , < ((0...𝑁), 𝑇))
102 eqid 2738 . . . . . . . 8 sup({𝑥 ∈ (0..^𝑀) ∣ (𝑄𝑥) ≤ (𝑆𝐽)}, ℝ, < ) = sup({𝑥 ∈ (0..^𝑀) ∣ (𝑄𝑥) ≤ (𝑆𝐽)}, ℝ, < )
1032, 3, 4, 6, 23, 57, 76, 77, 78, 101, 102fourierdlem20 43558 . . . . . . 7 (𝜑 → ∃𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
104 fourierdlem50.ch . . . . . . . . . . . . 13 (𝜒 ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))))
105104biimpi 215 . . . . . . . . . . . . . . . . . 18 (𝜒 → ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))))
106 simp-4l 779 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))) → 𝜑)
107105, 106syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝜑)
108 simplr 765 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))) → 𝑘 ∈ (0..^𝑀))
109105, 108syl 17 . . . . . . . . . . . . . . . . 17 (𝜒𝑘 ∈ (0..^𝑀))
110107, 109jca 511 . . . . . . . . . . . . . . . 16 (𝜒 → (𝜑𝑘 ∈ (0..^𝑀)))
111 simp-4r 780 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))) → 𝑖 ∈ (0..^𝑀))
112105, 111syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑖 ∈ (0..^𝑀))
113 elfzofz 13331 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (0..^𝑀) → 𝑘 ∈ (0...𝑀))
114113ad2antlr 723 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))) → 𝑘 ∈ (0...𝑀))
115105, 114syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝑘 ∈ (0...𝑀))
116107, 18syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒𝑉:(0...𝑀)⟶ℝ)
117116, 115ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑉𝑘) ∈ ℝ)
118107, 13syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒𝑋 ∈ ℝ)
119117, 118resubcld 11333 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑉𝑘) − 𝑋) ∈ ℝ)
120 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 𝑘 → (𝑉𝑖) = (𝑉𝑘))
121120oveq1d 7270 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑘) − 𝑋))
122121, 22fvmptg 6855 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ (0...𝑀) ∧ ((𝑉𝑘) − 𝑋) ∈ ℝ) → (𝑄𝑘) = ((𝑉𝑘) − 𝑋))
123115, 119, 122syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑄𝑘) = ((𝑉𝑘) − 𝑋))
124123, 119eqeltrd 2839 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑄𝑘) ∈ ℝ)
12523adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
126 fzofzp1 13412 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
127126adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
128125, 127ffvelrnd 6944 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
129107, 112, 128syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑄‘(𝑖 + 1)) ∈ ℝ)
130 isof1o 7174 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑆 Isom < , < ((0...𝑁), 𝑇) → 𝑆:(0...𝑁)–1-1-onto𝑇)
131101, 130syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑆:(0...𝑁)–1-1-onto𝑇)
132 f1of 6700 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆:(0...𝑁)–1-1-onto𝑇𝑆:(0...𝑁)⟶𝑇)
133131, 132syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆:(0...𝑁)⟶𝑇)
134 fzofzp1 13412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁))
13577, 134syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐽 + 1) ∈ (0...𝑁))
136133, 135ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ 𝑇)
13798, 136sseldd 3918 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ)
138107, 137syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆‘(𝐽 + 1)) ∈ ℝ)
139 elfzofz 13331 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁))
14077, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐽 ∈ (0...𝑁))
141133, 140ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑆𝐽) ∈ 𝑇)
14298, 141sseldd 3918 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑆𝐽) ∈ ℝ)
143107, 142syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑆𝐽) ∈ ℝ)
144105simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))))
145124rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑄𝑘) ∈ ℝ*)
14623adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
147 fzofzp1 13412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ (0..^𝑀) → (𝑘 + 1) ∈ (0...𝑀))
148147adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘 ∈ (0..^𝑀)) → (𝑘 + 1) ∈ (0...𝑀))
149146, 148ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (0..^𝑀)) → (𝑄‘(𝑘 + 1)) ∈ ℝ)
150149rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (0..^𝑀)) → (𝑄‘(𝑘 + 1)) ∈ ℝ*)
151110, 150syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑄‘(𝑘 + 1)) ∈ ℝ*)
152143rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑆𝐽) ∈ ℝ*)
153138rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑆‘(𝐽 + 1)) ∈ ℝ*)
154 elfzoelz 13316 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
155154zred 12355 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℝ)
156155ltp1d 11835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐽 ∈ (0..^𝑁) → 𝐽 < (𝐽 + 1))
15777, 156syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐽 < (𝐽 + 1))
158 isoeq5 7172 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) → (𝑆 Isom < , < ((0...𝑁), 𝑇) ↔ 𝑆 Isom < , < ((0...𝑁), ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))))))
15978, 158ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑆 Isom < , < ((0...𝑁), 𝑇) ↔ 𝑆 Isom < , < ((0...𝑁), ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))))
160101, 159sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑆 Isom < , < ((0...𝑁), ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))))
161 isorel 7177 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 Isom < , < ((0...𝑁), ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵)))) ∧ (𝐽 ∈ (0...𝑁) ∧ (𝐽 + 1) ∈ (0...𝑁))) → (𝐽 < (𝐽 + 1) ↔ (𝑆𝐽) < (𝑆‘(𝐽 + 1))))
162160, 140, 135, 161syl12anc 833 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐽 < (𝐽 + 1) ↔ (𝑆𝐽) < (𝑆‘(𝐽 + 1))))
163157, 162mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑆𝐽) < (𝑆‘(𝐽 + 1)))
164107, 163syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → (𝑆𝐽) < (𝑆‘(𝐽 + 1)))
165145, 151, 152, 153, 164ioossioobi 42945 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ ((𝑄𝑘) ≤ (𝑆𝐽) ∧ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝑘 + 1)))))
166144, 165mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → ((𝑄𝑘) ≤ (𝑆𝐽) ∧ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝑘 + 1))))
167166simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑄𝑘) ≤ (𝑆𝐽))
168124, 143, 138, 167, 164lelttrd 11063 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑄𝑘) < (𝑆‘(𝐽 + 1)))
169 elfzofz 13331 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
170169ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0...𝑀))
171170ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))) → 𝑖 ∈ (0...𝑀))
172105, 171syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒𝑖 ∈ (0...𝑀))
173107, 172, 21syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → ((𝑉𝑖) − 𝑋) ∈ ℝ)
17422fvmpt2 6868 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
175172, 173, 174syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
176175, 173eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (𝑄𝑖) ∈ ℝ)
177 simpllr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))) → ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
178105, 177syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
179176, 129, 143, 138, 164, 178fourierdlem10 43548 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑄𝑖) ≤ (𝑆𝐽) ∧ (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝑖 + 1))))
180179simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝑖 + 1)))
181124, 138, 129, 168, 180ltletrd 11065 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑄𝑘) < (𝑄‘(𝑖 + 1)))
182124, 129, 118, 181ltadd2dd 11064 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑋 + (𝑄𝑘)) < (𝑋 + (𝑄‘(𝑖 + 1))))
183123oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋 + (𝑄𝑘)) = (𝑋 + ((𝑉𝑘) − 𝑋)))
184107, 46syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑋 ∈ ℂ)
185117recnd 10934 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑉𝑘) ∈ ℂ)
186184, 185pncan3d 11265 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋 + ((𝑉𝑘) − 𝑋)) = (𝑉𝑘))
187183, 186eqtr2d 2779 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑉𝑘) = (𝑋 + (𝑄𝑘)))
188112, 126syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑖 + 1) ∈ (0...𝑀))
18918adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
190189, 127ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
191107, 112, 190syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (𝑉‘(𝑖 + 1)) ∈ ℝ)
192191, 118resubcld 11333 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
193188, 192jca 511 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ((𝑖 + 1) ∈ (0...𝑀) ∧ ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ))
194 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑖 + 1) → (𝑘 ∈ (0...𝑀) ↔ (𝑖 + 1) ∈ (0...𝑀)))
195 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = (𝑖 + 1) → (𝑉𝑘) = (𝑉‘(𝑖 + 1)))
196195oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = (𝑖 + 1) → ((𝑉𝑘) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
197196eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑖 + 1) → (((𝑉𝑘) − 𝑋) ∈ ℝ ↔ ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ))
198194, 197anbi12d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑖 + 1) → ((𝑘 ∈ (0...𝑀) ∧ ((𝑉𝑘) − 𝑋) ∈ ℝ) ↔ ((𝑖 + 1) ∈ (0...𝑀) ∧ ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)))
199 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = (𝑖 + 1) → (𝑄𝑘) = (𝑄‘(𝑖 + 1)))
200199, 196eqeq12d 2754 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = (𝑖 + 1) → ((𝑄𝑘) = ((𝑉𝑘) − 𝑋) ↔ (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)))
201198, 200imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = (𝑖 + 1) → (((𝑘 ∈ (0...𝑀) ∧ ((𝑉𝑘) − 𝑋) ∈ ℝ) → (𝑄𝑘) = ((𝑉𝑘) − 𝑋)) ↔ (((𝑖 + 1) ∈ (0...𝑀) ∧ ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))))
202201, 122vtoclg 3495 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 + 1) ∈ (0...𝑀) → (((𝑖 + 1) ∈ (0...𝑀) ∧ ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋)))
203188, 193, 202sylc 65 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
204203oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋 + (𝑄‘(𝑖 + 1))) = (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)))
205191recnd 10934 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑉‘(𝑖 + 1)) ∈ ℂ)
206184, 205pncan3d 11265 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋 + ((𝑉‘(𝑖 + 1)) − 𝑋)) = (𝑉‘(𝑖 + 1)))
207204, 206eqtr2d 2779 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑉‘(𝑖 + 1)) = (𝑋 + (𝑄‘(𝑖 + 1))))
208182, 187, 2073brtr4d 5102 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑉𝑘) < (𝑉‘(𝑖 + 1)))
209 eleq1w 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑖 → (𝑙 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑀)))
210209anbi2d 628 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → (((𝜑𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ↔ ((𝜑𝑘 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (0..^𝑀))))
211 oveq1 7262 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑖 → (𝑙 + 1) = (𝑖 + 1))
212211fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑖 → (𝑉‘(𝑙 + 1)) = (𝑉‘(𝑖 + 1)))
213212breq2d 5082 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → ((𝑉𝑘) < (𝑉‘(𝑙 + 1)) ↔ (𝑉𝑘) < (𝑉‘(𝑖 + 1))))
214210, 213anbi12d 630 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑖 → ((((𝜑𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉𝑘) < (𝑉‘(𝑙 + 1))) ↔ (((𝜑𝑘 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉𝑘) < (𝑉‘(𝑖 + 1)))))
215 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑖 → (𝑉𝑙) = (𝑉𝑖))
216215breq2d 5082 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑖 → ((𝑉𝑘) ≤ (𝑉𝑙) ↔ (𝑉𝑘) ≤ (𝑉𝑖)))
217214, 216imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑖 → (((((𝜑𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉𝑘) < (𝑉‘(𝑙 + 1))) → (𝑉𝑘) ≤ (𝑉𝑙)) ↔ ((((𝜑𝑘 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉𝑘) < (𝑉‘(𝑖 + 1))) → (𝑉𝑘) ≤ (𝑉𝑖))))
218 eleq1w 2821 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑘 → ( ∈ (0..^𝑀) ↔ 𝑘 ∈ (0..^𝑀)))
219218anbi2d 628 . . . . . . . . . . . . . . . . . . . . 21 ( = 𝑘 → ((𝜑 ∈ (0..^𝑀)) ↔ (𝜑𝑘 ∈ (0..^𝑀))))
220219anbi1d 629 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑘 → (((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ↔ ((𝜑𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀))))
221 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 ( = 𝑘 → (𝑉) = (𝑉𝑘))
222221breq1d 5080 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑘 → ((𝑉) < (𝑉‘(𝑙 + 1)) ↔ (𝑉𝑘) < (𝑉‘(𝑙 + 1))))
223220, 222anbi12d 630 . . . . . . . . . . . . . . . . . . 19 ( = 𝑘 → ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) ↔ (((𝜑𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉𝑘) < (𝑉‘(𝑙 + 1)))))
224221breq1d 5080 . . . . . . . . . . . . . . . . . . 19 ( = 𝑘 → ((𝑉) ≤ (𝑉𝑙) ↔ (𝑉𝑘) ≤ (𝑉𝑙)))
225223, 224imbi12d 344 . . . . . . . . . . . . . . . . . 18 ( = 𝑘 → (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) → (𝑉) ≤ (𝑉𝑙)) ↔ ((((𝜑𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉𝑘) < (𝑉‘(𝑙 + 1))) → (𝑉𝑘) ≤ (𝑉𝑙))))
226 elfzoelz 13316 . . . . . . . . . . . . . . . . . . . . 21 ( ∈ (0..^𝑀) → ∈ ℤ)
227226ad3antlr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) → ∈ ℤ)
228 elfzoelz 13316 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ (0..^𝑀) → 𝑙 ∈ ℤ)
229228ad2antlr 723 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) → 𝑙 ∈ ℤ)
230 simplr 765 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) ∧ ¬ < (𝑙 + 1)) → (𝑉) < (𝑉‘(𝑙 + 1)))
23118adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑙 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
232 fzofzp1 13412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 ∈ (0..^𝑀) → (𝑙 + 1) ∈ (0...𝑀))
233232adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑙 ∈ (0..^𝑀)) → (𝑙 + 1) ∈ (0...𝑀))
234231, 233ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑙 ∈ (0..^𝑀)) → (𝑉‘(𝑙 + 1)) ∈ ℝ)
235234adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) → (𝑉‘(𝑙 + 1)) ∈ ℝ)
236235adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ < (𝑙 + 1)) → (𝑉‘(𝑙 + 1)) ∈ ℝ)
23718adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
238 elfzofz 13331 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( ∈ (0..^𝑀) → ∈ (0...𝑀))
239238adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∈ (0..^𝑀)) → ∈ (0...𝑀))
240237, 239ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∈ (0..^𝑀)) → (𝑉) ∈ ℝ)
241240ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ < (𝑙 + 1)) → (𝑉) ∈ ℝ)
242228zred 12355 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 ∈ (0..^𝑀) → 𝑙 ∈ ℝ)
243 peano2re 11078 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑙 ∈ ℝ → (𝑙 + 1) ∈ ℝ)
244242, 243syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑙 ∈ (0..^𝑀) → (𝑙 + 1) ∈ ℝ)
245244ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ < (𝑙 + 1)) → (𝑙 + 1) ∈ ℝ)
246226zred 12355 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ( ∈ (0..^𝑀) → ∈ ℝ)
247246ad3antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ < (𝑙 + 1)) → ∈ ℝ)
248 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ < (𝑙 + 1)) → ¬ < (𝑙 + 1))
249245, 247, 248nltled 11055 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ < (𝑙 + 1)) → (𝑙 + 1) ≤ )
250228peano2zd 12358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑙 ∈ (0..^𝑀) → (𝑙 + 1) ∈ ℤ)
251250ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ) → (𝑙 + 1) ∈ ℤ)
252226ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ) → ∈ ℤ)
253 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ) → (𝑙 + 1) ≤ )
254 eluz2 12517 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ( ∈ (ℤ‘(𝑙 + 1)) ↔ ((𝑙 + 1) ∈ ℤ ∧ ∈ ℤ ∧ (𝑙 + 1) ≤ ))
255251, 252, 253, 254syl3anbrc 1341 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ) → ∈ (ℤ‘(𝑙 + 1)))
256255adantlll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ) → ∈ (ℤ‘(𝑙 + 1)))
257 simplll 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝜑)
258 0zd 12261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 0 ∈ ℤ)
259 elfzoel2 13315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ( ∈ (0..^𝑀) → 𝑀 ∈ ℤ)
260259ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑀 ∈ ℤ)
261 elfzelz 13185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ ((𝑙 + 1)...) → 𝑖 ∈ ℤ)
262261adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑖 ∈ ℤ)
263 0red 10909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 0 ∈ ℝ)
264261zred 12355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖 ∈ ((𝑙 + 1)...) → 𝑖 ∈ ℝ)
265264adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑖 ∈ ℝ)
266242adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑙 ∈ ℝ)
267 elfzole1 13324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑙 ∈ (0..^𝑀) → 0 ≤ 𝑙)
268267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 0 ≤ 𝑙)
269266, 243syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → (𝑙 + 1) ∈ ℝ)
270266ltp1d 11835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑙 < (𝑙 + 1))
271 elfzle1 13188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑖 ∈ ((𝑙 + 1)...) → (𝑙 + 1) ≤ 𝑖)
272271adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → (𝑙 + 1) ≤ 𝑖)
273266, 269, 265, 270, 272ltletrd 11065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑙 < 𝑖)
274263, 266, 265, 268, 273lelttrd 11063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 0 < 𝑖)
275263, 265, 274ltled 11053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 0 ≤ 𝑖)
276275adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 0 ≤ 𝑖)
277264adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑖 ∈ ℝ)
278259zred 12355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ( ∈ (0..^𝑀) → 𝑀 ∈ ℝ)
279278adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑀 ∈ ℝ)
280246adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → ∈ ℝ)
281 elfzle2 13189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑖 ∈ ((𝑙 + 1)...) → 𝑖)
282281adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑖)
283 elfzolt2 13325 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ( ∈ (0..^𝑀) → < 𝑀)
284283adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → < 𝑀)
285277, 280, 279, 282, 284lelttrd 11063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑖 < 𝑀)
286277, 279, 285ltled 11053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑖𝑀)
287286adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑖𝑀)
288258, 260, 262, 276, 287elfzd 13176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑖 ∈ (0...𝑀))
289288adantlll 714 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → 𝑖 ∈ (0...𝑀))
290257, 289, 19syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → (𝑉𝑖) ∈ ℝ)
291290adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ) ∧ 𝑖 ∈ ((𝑙 + 1)...)) → (𝑉𝑖) ∈ ℝ)
292 simplll 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝜑)
293 0zd 12261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 0 ∈ ℤ)
294 elfzelz 13185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑖 ∈ ((𝑙 + 1)...( − 1)) → 𝑖 ∈ ℤ)
295294adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑖 ∈ ℤ)
296 0red 10909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 0 ∈ ℝ)
297295zred 12355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑖 ∈ ℝ)
298242adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑙 ∈ ℝ)
299267adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 0 ≤ 𝑙)
300298, 243syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → (𝑙 + 1) ∈ ℝ)
301298ltp1d 11835 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑙 < (𝑙 + 1))
302 elfzle1 13188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑖 ∈ ((𝑙 + 1)...( − 1)) → (𝑙 + 1) ≤ 𝑖)
303302adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → (𝑙 + 1) ≤ 𝑖)
304298, 300, 297, 301, 303ltletrd 11065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑙 < 𝑖)
305296, 298, 297, 299, 304lelttrd 11063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 0 < 𝑖)
306296, 297, 305ltled 11053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 0 ≤ 𝑖)
307 eluz2 12517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑖 ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 0 ≤ 𝑖))
308293, 295, 306, 307syl3anbrc 1341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑖 ∈ (ℤ‘0))
309308adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑖 ∈ (ℤ‘0))
310 elfzoel2 13315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑙 ∈ (0..^𝑀) → 𝑀 ∈ ℤ)
311310ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑀 ∈ ℤ)
312294zred 12355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖 ∈ ((𝑙 + 1)...( − 1)) → 𝑖 ∈ ℝ)
313312adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑖 ∈ ℝ)
314 peano2rem 11218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ( ∈ ℝ → ( − 1) ∈ ℝ)
315246, 314syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ( ∈ (0..^𝑀) → ( − 1) ∈ ℝ)
316315adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → ( − 1) ∈ ℝ)
317278adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑀 ∈ ℝ)
318 elfzle2 13189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑖 ∈ ((𝑙 + 1)...( − 1)) → 𝑖 ≤ ( − 1))
319318adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑖 ≤ ( − 1))
320246ltm1d 11837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ( ∈ (0..^𝑀) → ( − 1) < )
321315, 246, 278, 320, 283lttrd 11066 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ( ∈ (0..^𝑀) → ( − 1) < 𝑀)
322321adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → ( − 1) < 𝑀)
323313, 316, 317, 319, 322lelttrd 11063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑖 < 𝑀)
324323adantll 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑖 < 𝑀)
325324adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑖 < 𝑀)
326 elfzo2 13319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ (0..^𝑀) ↔ (𝑖 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀))
327309, 311, 325, 326syl3anbrc 1341 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → 𝑖 ∈ (0..^𝑀))
328169, 19sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
32941simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))
330329r19.21bi 3132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) < (𝑉‘(𝑖 + 1)))
331328, 190, 330ltled 11053 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ≤ (𝑉‘(𝑖 + 1)))
332292, 327, 331syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → (𝑉𝑖) ≤ (𝑉‘(𝑖 + 1)))
333332adantlr 711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ) ∧ 𝑖 ∈ ((𝑙 + 1)...( − 1))) → (𝑉𝑖) ≤ (𝑉‘(𝑖 + 1)))
334256, 291, 333monoord 13681 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑙 + 1) ≤ ) → (𝑉‘(𝑙 + 1)) ≤ (𝑉))
335249, 334syldan 590 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ < (𝑙 + 1)) → (𝑉‘(𝑙 + 1)) ≤ (𝑉))
336236, 241, 335lensymd 11056 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ ¬ < (𝑙 + 1)) → ¬ (𝑉) < (𝑉‘(𝑙 + 1)))
337336adantlr 711 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) ∧ ¬ < (𝑙 + 1)) → ¬ (𝑉) < (𝑉‘(𝑙 + 1)))
338230, 337condan 814 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) → < (𝑙 + 1))
339 zleltp1 12301 . . . . . . . . . . . . . . . . . . . . . 22 (( ∈ ℤ ∧ 𝑙 ∈ ℤ) → (𝑙 < (𝑙 + 1)))
340227, 229, 339syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) → (𝑙 < (𝑙 + 1)))
341338, 340mpbird 256 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) → 𝑙)
342 eluz2 12517 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ (ℤ) ↔ ( ∈ ℤ ∧ 𝑙 ∈ ℤ ∧ 𝑙))
343227, 229, 341, 342syl3anbrc 1341 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) → 𝑙 ∈ (ℤ))
34418ad3antrrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (...𝑙)) → 𝑉:(0...𝑀)⟶ℝ)
345 0zd 12261 . . . . . . . . . . . . . . . . . . . . . . 23 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (...𝑙)) → 0 ∈ ℤ)
346259ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (...𝑙)) → 𝑀 ∈ ℤ)
347 elfzelz 13185 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (...𝑙) → 𝑖 ∈ ℤ)
348347adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (...𝑙)) → 𝑖 ∈ ℤ)
349 0red 10909 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → 0 ∈ ℝ)
350246adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → ∈ ℝ)
351347zred 12355 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (...𝑙) → 𝑖 ∈ ℝ)
352351adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → 𝑖 ∈ ℝ)
353 elfzole1 13324 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0..^𝑀) → 0 ≤ )
354353adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → 0 ≤ )
355 elfzle1 13188 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (...𝑙) → 𝑖)
356355adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → 𝑖)
357349, 350, 352, 354, 356letrd 11062 . . . . . . . . . . . . . . . . . . . . . . . 24 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → 0 ≤ 𝑖)
358357adantlr 711 . . . . . . . . . . . . . . . . . . . . . . 23 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (...𝑙)) → 0 ≤ 𝑖)
359351adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → 𝑖 ∈ ℝ)
360310zred 12355 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑙 ∈ (0..^𝑀) → 𝑀 ∈ ℝ)
361360adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → 𝑀 ∈ ℝ)
362242adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → 𝑙 ∈ ℝ)
363 elfzle2 13189 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (...𝑙) → 𝑖𝑙)
364363adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → 𝑖𝑙)
365 elfzolt2 13325 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑙 ∈ (0..^𝑀) → 𝑙 < 𝑀)
366365adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → 𝑙 < 𝑀)
367359, 362, 361, 364, 366lelttrd 11063 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → 𝑖 < 𝑀)
368359, 361, 367ltled 11053 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...𝑙)) → 𝑖𝑀)
369368adantll 710 . . . . . . . . . . . . . . . . . . . . . . 23 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (...𝑙)) → 𝑖𝑀)
370345, 346, 348, 358, 369elfzd 13176 . . . . . . . . . . . . . . . . . . . . . 22 ((( ∈ (0..^𝑀) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (...𝑙)) → 𝑖 ∈ (0...𝑀))
371370adantlll 714 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (...𝑙)) → 𝑖 ∈ (0...𝑀))
372344, 371ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (...𝑙)) → (𝑉𝑖) ∈ ℝ)
373372adantlr 711 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (...𝑙)) → (𝑉𝑖) ∈ ℝ)
374 simp-4l 779 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝜑)
375 0zd 12261 . . . . . . . . . . . . . . . . . . . . . . . 24 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 0 ∈ ℤ)
376 elfzelz 13185 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (...(𝑙 − 1)) → 𝑖 ∈ ℤ)
377376adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖 ∈ ℤ)
378 0red 10909 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 0 ∈ ℝ)
379246adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → ∈ ℝ)
380377zred 12355 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖 ∈ ℝ)
381353adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 0 ≤ )
382 elfzle1 13188 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (...(𝑙 − 1)) → 𝑖)
383382adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖)
384378, 379, 380, 381, 383letrd 11062 . . . . . . . . . . . . . . . . . . . . . . . 24 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 0 ≤ 𝑖)
385375, 377, 384, 307syl3anbrc 1341 . . . . . . . . . . . . . . . . . . . . . . 23 (( ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖 ∈ (ℤ‘0))
386385adantll 710 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖 ∈ (ℤ‘0))
387386ad4ant14 748 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖 ∈ (ℤ‘0))
388310ad3antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑀 ∈ ℤ)
389376zred 12355 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (...(𝑙 − 1)) → 𝑖 ∈ ℝ)
390389adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖 ∈ ℝ)
391242adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑙 ∈ ℝ)
392360adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑀 ∈ ℝ)
393 elfzle2 13189 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑖 ∈ (...(𝑙 − 1)) → 𝑖 ≤ (𝑙 − 1))
394393adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖 ≤ (𝑙 − 1))
395 zltlem1 12303 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 ∈ ℤ ∧ 𝑙 ∈ ℤ) → (𝑖 < 𝑙𝑖 ≤ (𝑙 − 1)))
396376, 228, 395syl2anr 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → (𝑖 < 𝑙𝑖 ≤ (𝑙 − 1)))
397394, 396mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖 < 𝑙)
398365adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑙 < 𝑀)
399390, 391, 392, 397, 398lttrd 11066 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑙 ∈ (0..^𝑀) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖 < 𝑀)
400399adantll 710 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖 < 𝑀)
401400adantlr 711 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖 < 𝑀)
402387, 388, 401, 326syl3anbrc 1341 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (...(𝑙 − 1))) → 𝑖 ∈ (0..^𝑀))
403374, 402, 331syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) ∧ 𝑖 ∈ (...(𝑙 − 1))) → (𝑉𝑖) ≤ (𝑉‘(𝑖 + 1)))
404343, 373, 403monoord 13681 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) → (𝑉) ≤ (𝑉𝑙))
405225, 404chvarvv 2003 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉𝑘) < (𝑉‘(𝑙 + 1))) → (𝑉𝑘) ≤ (𝑉𝑙))
406217, 405chvarvv 2003 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (0..^𝑀)) ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝑉𝑘) < (𝑉‘(𝑖 + 1))) → (𝑉𝑘) ≤ (𝑉𝑖))
407110, 112, 208, 406syl21anc 834 . . . . . . . . . . . . . . 15 (𝜒 → (𝑉𝑘) ≤ (𝑉𝑖))
408107, 112jca 511 . . . . . . . . . . . . . . . 16 (𝜒 → (𝜑𝑖 ∈ (0..^𝑀)))
409110, 149syl 17 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑄‘(𝑘 + 1)) ∈ ℝ)
410179simpld 494 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑄𝑖) ≤ (𝑆𝐽))
411176, 143, 138, 410, 164lelttrd 11063 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑄𝑖) < (𝑆‘(𝐽 + 1)))
412166simprd 495 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆‘(𝐽 + 1)) ≤ (𝑄‘(𝑘 + 1)))
413176, 138, 409, 411, 412ltletrd 11065 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑄𝑖) < (𝑄‘(𝑘 + 1)))
414176, 409, 118, 413ltadd2dd 11064 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑋 + (𝑄𝑖)) < (𝑋 + (𝑄‘(𝑘 + 1))))
415175oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋 + (𝑄𝑖)) = (𝑋 + ((𝑉𝑖) − 𝑋)))
416107, 172, 19syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑉𝑖) ∈ ℝ)
417416recnd 10934 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑉𝑖) ∈ ℂ)
418184, 417pncan3d 11265 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋 + ((𝑉𝑖) − 𝑋)) = (𝑉𝑖))
419415, 418eqtr2d 2779 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑉𝑖) = (𝑋 + (𝑄𝑖)))
42022a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (0..^𝑀)) → 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
421 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝑉𝑖) = (𝑉‘(𝑘 + 1)))
422421oveq1d 7270 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑘 + 1) → ((𝑉𝑖) − 𝑋) = ((𝑉‘(𝑘 + 1)) − 𝑋))
423422adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (0..^𝑀)) ∧ 𝑖 = (𝑘 + 1)) → ((𝑉𝑖) − 𝑋) = ((𝑉‘(𝑘 + 1)) − 𝑋))
42418adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
425424, 148ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (0..^𝑀)) → (𝑉‘(𝑘 + 1)) ∈ ℝ)
42613adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
427425, 426resubcld 11333 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (0..^𝑀)) → ((𝑉‘(𝑘 + 1)) − 𝑋) ∈ ℝ)
428420, 423, 148, 427fvmptd 6864 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (0..^𝑀)) → (𝑄‘(𝑘 + 1)) = ((𝑉‘(𝑘 + 1)) − 𝑋))
429107, 109, 428syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑄‘(𝑘 + 1)) = ((𝑉‘(𝑘 + 1)) − 𝑋))
430429oveq2d 7271 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋 + (𝑄‘(𝑘 + 1))) = (𝑋 + ((𝑉‘(𝑘 + 1)) − 𝑋)))
431110, 425syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝑉‘(𝑘 + 1)) ∈ ℝ)
432431recnd 10934 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑉‘(𝑘 + 1)) ∈ ℂ)
433184, 432pncan3d 11265 . . . . . . . . . . . . . . . . . 18 (𝜒 → (𝑋 + ((𝑉‘(𝑘 + 1)) − 𝑋)) = (𝑉‘(𝑘 + 1)))
434430, 433eqtr2d 2779 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑉‘(𝑘 + 1)) = (𝑋 + (𝑄‘(𝑘 + 1))))
435414, 419, 4343brtr4d 5102 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑉𝑖) < (𝑉‘(𝑘 + 1)))
436 eleq1w 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑘 → (𝑙 ∈ (0..^𝑀) ↔ 𝑘 ∈ (0..^𝑀)))
437436anbi2d 628 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑘 → (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ↔ ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑘 ∈ (0..^𝑀))))
438 oveq1 7262 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑘 → (𝑙 + 1) = (𝑘 + 1))
439438fveq2d 6760 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑘 → (𝑉‘(𝑙 + 1)) = (𝑉‘(𝑘 + 1)))
440439breq2d 5082 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑘 → ((𝑉𝑖) < (𝑉‘(𝑙 + 1)) ↔ (𝑉𝑖) < (𝑉‘(𝑘 + 1))))
441437, 440anbi12d 630 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑘 → ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉𝑖) < (𝑉‘(𝑙 + 1))) ↔ (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑘 ∈ (0..^𝑀)) ∧ (𝑉𝑖) < (𝑉‘(𝑘 + 1)))))
442 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑘 → (𝑉𝑙) = (𝑉𝑘))
443442breq2d 5082 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑘 → ((𝑉𝑖) ≤ (𝑉𝑙) ↔ (𝑉𝑖) ≤ (𝑉𝑘)))
444441, 443imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑘 → (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉𝑖) < (𝑉‘(𝑙 + 1))) → (𝑉𝑖) ≤ (𝑉𝑙)) ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑘 ∈ (0..^𝑀)) ∧ (𝑉𝑖) < (𝑉‘(𝑘 + 1))) → (𝑉𝑖) ≤ (𝑉𝑘))))
445 eleq1w 2821 . . . . . . . . . . . . . . . . . . . . . 22 ( = 𝑖 → ( ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑀)))
446445anbi2d 628 . . . . . . . . . . . . . . . . . . . . 21 ( = 𝑖 → ((𝜑 ∈ (0..^𝑀)) ↔ (𝜑𝑖 ∈ (0..^𝑀))))
447446anbi1d 629 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑖 → (((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ↔ ((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀))))
448 fveq2 6756 . . . . . . . . . . . . . . . . . . . . 21 ( = 𝑖 → (𝑉) = (𝑉𝑖))
449448breq1d 5080 . . . . . . . . . . . . . . . . . . . 20 ( = 𝑖 → ((𝑉) < (𝑉‘(𝑙 + 1)) ↔ (𝑉𝑖) < (𝑉‘(𝑙 + 1))))
450447, 449anbi12d 630 . . . . . . . . . . . . . . . . . . 19 ( = 𝑖 → ((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) ↔ (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉𝑖) < (𝑉‘(𝑙 + 1)))))
451448breq1d 5080 . . . . . . . . . . . . . . . . . . 19 ( = 𝑖 → ((𝑉) ≤ (𝑉𝑙) ↔ (𝑉𝑖) ≤ (𝑉𝑙)))
452450, 451imbi12d 344 . . . . . . . . . . . . . . . . . 18 ( = 𝑖 → (((((𝜑 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉) < (𝑉‘(𝑙 + 1))) → (𝑉) ≤ (𝑉𝑙)) ↔ ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉𝑖) < (𝑉‘(𝑙 + 1))) → (𝑉𝑖) ≤ (𝑉𝑙))))
453452, 404chvarvv 2003 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (0..^𝑀)) ∧ (𝑉𝑖) < (𝑉‘(𝑙 + 1))) → (𝑉𝑖) ≤ (𝑉𝑙))
454444, 453chvarvv 2003 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑘 ∈ (0..^𝑀)) ∧ (𝑉𝑖) < (𝑉‘(𝑘 + 1))) → (𝑉𝑖) ≤ (𝑉𝑘))
455408, 109, 435, 454syl21anc 834 . . . . . . . . . . . . . . 15 (𝜒 → (𝑉𝑖) ≤ (𝑉𝑘))
456117, 416letri3d 11047 . . . . . . . . . . . . . . 15 (𝜒 → ((𝑉𝑘) = (𝑉𝑖) ↔ ((𝑉𝑘) ≤ (𝑉𝑖) ∧ (𝑉𝑖) ≤ (𝑉𝑘))))
457407, 455, 456mpbir2and 709 . . . . . . . . . . . . . 14 (𝜒 → (𝑉𝑘) = (𝑉𝑖))
4587, 2, 8fourierdlem34 43572 . . . . . . . . . . . . . . . 16 (𝜑𝑉:(0...𝑀)–1-1→ℝ)
459107, 458syl 17 . . . . . . . . . . . . . . 15 (𝜒𝑉:(0...𝑀)–1-1→ℝ)
460 f1fveq 7116 . . . . . . . . . . . . . . 15 ((𝑉:(0...𝑀)–1-1→ℝ ∧ (𝑘 ∈ (0...𝑀) ∧ 𝑖 ∈ (0...𝑀))) → ((𝑉𝑘) = (𝑉𝑖) ↔ 𝑘 = 𝑖))
461459, 115, 172, 460syl12anc 833 . . . . . . . . . . . . . 14 (𝜒 → ((𝑉𝑘) = (𝑉𝑖) ↔ 𝑘 = 𝑖))
462457, 461mpbid 231 . . . . . . . . . . . . 13 (𝜒𝑘 = 𝑖)
463104, 462sylbir 234 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))) → 𝑘 = 𝑖)
464463ex 412 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) → (((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))) → 𝑘 = 𝑖))
465 simpl 482 . . . . . . . . . . . . . 14 ((((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑘 = 𝑖) → ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
466 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (𝑄𝑘) = (𝑄𝑖))
467 oveq1 7262 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1))
468467fveq2d 6760 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (𝑄‘(𝑘 + 1)) = (𝑄‘(𝑖 + 1)))
469466, 468oveq12d 7273 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
470469eqcomd 2744 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))))
471470adantl 481 . . . . . . . . . . . . . 14 ((((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑘 = 𝑖) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))))
472465, 471sseqtrd 3957 . . . . . . . . . . . . 13 ((((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∧ 𝑘 = 𝑖) → ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))))
473472ex 412 . . . . . . . . . . . 12 (((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑘 = 𝑖 → ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))))
474473ad2antlr 723 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑘 = 𝑖 → ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))))
475464, 474impbid 211 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∧ 𝑘 ∈ (0..^𝑀)) → (((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ 𝑘 = 𝑖))
476475ralrimiva 3107 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ∀𝑘 ∈ (0..^𝑀)(((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ 𝑘 = 𝑖))
477476ex 412 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ∀𝑘 ∈ (0..^𝑀)(((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ 𝑘 = 𝑖)))
478477reximdva 3202 . . . . . . 7 (𝜑 → (∃𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)∀𝑘 ∈ (0..^𝑀)(((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ 𝑘 = 𝑖)))
479103, 478mpd 15 . . . . . 6 (𝜑 → ∃𝑖 ∈ (0..^𝑀)∀𝑘 ∈ (0..^𝑀)(((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ 𝑘 = 𝑖))
480 reu6 3656 . . . . . 6 (∃!𝑘 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)∀𝑘 ∈ (0..^𝑀)(((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))) ↔ 𝑘 = 𝑖))
481479, 480sylibr 233 . . . . 5 (𝜑 → ∃!𝑘 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))))
482 fveq2 6756 . . . . . . . 8 (𝑖 = 𝑘 → (𝑄𝑖) = (𝑄𝑘))
483 oveq1 7262 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
484483fveq2d 6760 . . . . . . . 8 (𝑖 = 𝑘 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑘 + 1)))
485482, 484oveq12d 7273 . . . . . . 7 (𝑖 = 𝑘 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))))
486485sseq2d 3949 . . . . . 6 (𝑖 = 𝑘 → (((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1)))))
487486cbvreuvw 3375 . . . . 5 (∃!𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ ∃!𝑘 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑘)(,)(𝑄‘(𝑘 + 1))))
488481, 487sylibr 233 . . . 4 (𝜑 → ∃!𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
489 riotacl 7230 . . . 4 (∃!𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (0..^𝑀))
490488, 489syl 17 . . 3 (𝜑 → (𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (0..^𝑀))
4911, 490eqeltrid 2843 . 2 (𝜑𝑈 ∈ (0..^𝑀))
4921eqcomi 2747 . . . 4 (𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = 𝑈
493492a1i 11 . . 3 (𝜑 → (𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = 𝑈)
494 fveq2 6756 . . . . . . 7 (𝑖 = 𝑈 → (𝑄𝑖) = (𝑄𝑈))
495 oveq1 7262 . . . . . . . 8 (𝑖 = 𝑈 → (𝑖 + 1) = (𝑈 + 1))
496495fveq2d 6760 . . . . . . 7 (𝑖 = 𝑈 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑈 + 1)))
497494, 496oveq12d 7273 . . . . . 6 (𝑖 = 𝑈 → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
498497sseq2d 3949 . . . . 5 (𝑖 = 𝑈 → (((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
499498riota2 7238 . . . 4 ((𝑈 ∈ (0..^𝑀) ∧ ∃!𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))) ↔ (𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = 𝑈))
500491, 488, 499syl2anc 583 . . 3 (𝜑 → (((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))) ↔ (𝑖 ∈ (0..^𝑀)((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = 𝑈))
501493, 500mpbird 256 . 2 (𝜑 → ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1))))
502491, 501jca 511 1 (𝜑 → (𝑈 ∈ (0..^𝑀) ∧ ((𝑆𝐽)(,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑄𝑈)(,)(𝑄‘(𝑈 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065  {crab 3067  cun 3881  cin 3882  wss 3883  {cpr 4560   class class class wbr 5070  cmpt 5153  ran crn 5581  cio 6374  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418   Isom wiso 6419  crio 7211  (class class class)co 7255  m cmap 8573  Fincfn 8691  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136  cn 11903  0cn0 12163  cz 12249  cuz 12511  (,)cioo 13008  [,]cicc 13011  ...cfz 13168  ..^cfzo 13311  chash 13972  πcpi 15704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  fourierdlem86  43623  fourierdlem103  43640  fourierdlem104  43641
  Copyright terms: Public domain W3C validator