| Step | Hyp | Ref
| Expression |
| 1 | | wessf1ornlem.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2 | | cnvimass 6099 |
. . . . . . . 8
⊢ (◡𝐹 “ {𝑢}) ⊆ dom 𝐹 |
| 3 | | wessf1ornlem.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 4 | 3 | fndmd 6672 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 5 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → dom 𝐹 = 𝐴) |
| 6 | 2, 5 | sseqtrid 4025 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → (◡𝐹 “ {𝑢}) ⊆ 𝐴) |
| 7 | | wessf1ornlem.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 We 𝐴) |
| 8 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → 𝑅 We 𝐴) |
| 9 | 2, 4 | sseqtrid 4025 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 “ {𝑢}) ⊆ 𝐴) |
| 10 | 1, 9 | ssexd 5323 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ {𝑢}) ∈ V) |
| 11 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → (◡𝐹 “ {𝑢}) ∈ V) |
| 12 | | inisegn0 6115 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ran 𝐹 ↔ (◡𝐹 “ {𝑢}) ≠ ∅) |
| 13 | 12 | biimpi 216 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ran 𝐹 → (◡𝐹 “ {𝑢}) ≠ ∅) |
| 14 | 13 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → (◡𝐹 “ {𝑢}) ≠ ∅) |
| 15 | | wereu 5680 |
. . . . . . . . 9
⊢ ((𝑅 We 𝐴 ∧ ((◡𝐹 “ {𝑢}) ∈ V ∧ (◡𝐹 “ {𝑢}) ⊆ 𝐴 ∧ (◡𝐹 “ {𝑢}) ≠ ∅)) → ∃!𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) |
| 16 | 8, 11, 6, 14, 15 | syl13anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → ∃!𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) |
| 17 | | riotacl 7406 |
. . . . . . . 8
⊢
(∃!𝑣 ∈
(◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣 → (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ (◡𝐹 “ {𝑢})) |
| 18 | 16, 17 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ (◡𝐹 “ {𝑢})) |
| 19 | 6, 18 | sseldd 3983 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ 𝐴) |
| 20 | 19 | ralrimiva 3145 |
. . . . 5
⊢ (𝜑 → ∀𝑢 ∈ ran 𝐹(℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ 𝐴) |
| 21 | | wessf1ornlem.g |
. . . . . . 7
⊢ 𝐺 = (𝑦 ∈ ran 𝐹 ↦ (℩𝑥 ∈ (◡𝐹 “ {𝑦})∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) |
| 22 | | sneq 4635 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑢 → {𝑦} = {𝑢}) |
| 23 | 22 | imaeq2d 6077 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑢 → (◡𝐹 “ {𝑦}) = (◡𝐹 “ {𝑢})) |
| 24 | 23 | raleqdv 3325 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑢 → (∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑧 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥)) |
| 25 | 23, 24 | riotaeqbidv 7392 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → (℩𝑥 ∈ (◡𝐹 “ {𝑦})∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥) = (℩𝑥 ∈ (◡𝐹 “ {𝑢})∀𝑧 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥)) |
| 26 | | breq1 5145 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑡 → (𝑧𝑅𝑥 ↔ 𝑡𝑅𝑥)) |
| 27 | 26 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑡 → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑡𝑅𝑥)) |
| 28 | 27 | cbvralvw 3236 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
(◡𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑥) |
| 29 | | breq2 5146 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑣 → (𝑡𝑅𝑥 ↔ 𝑡𝑅𝑣)) |
| 30 | 29 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑣 → (¬ 𝑡𝑅𝑥 ↔ ¬ 𝑡𝑅𝑣)) |
| 31 | 30 | ralbidv 3177 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑣 → (∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑥 ↔ ∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) |
| 32 | 28, 31 | bitrid 283 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑣 → (∀𝑧 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) |
| 33 | 32 | cbvriotavw 7399 |
. . . . . . . . 9
⊢
(℩𝑥
∈ (◡𝐹 “ {𝑢})∀𝑧 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥) = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) |
| 34 | 25, 33 | eqtrdi 2792 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (℩𝑥 ∈ (◡𝐹 “ {𝑦})∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥) = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) |
| 35 | 34 | cbvmptv 5254 |
. . . . . . 7
⊢ (𝑦 ∈ ran 𝐹 ↦ (℩𝑥 ∈ (◡𝐹 “ {𝑦})∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) = (𝑢 ∈ ran 𝐹 ↦ (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) |
| 36 | 21, 35 | eqtri 2764 |
. . . . . 6
⊢ 𝐺 = (𝑢 ∈ ran 𝐹 ↦ (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) |
| 37 | 36 | rnmptss 7142 |
. . . . 5
⊢
(∀𝑢 ∈
ran 𝐹(℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ 𝐴 → ran 𝐺 ⊆ 𝐴) |
| 38 | 20, 37 | syl 17 |
. . . 4
⊢ (𝜑 → ran 𝐺 ⊆ 𝐴) |
| 39 | 1, 38 | sselpwd 5327 |
. . 3
⊢ (𝜑 → ran 𝐺 ∈ 𝒫 𝐴) |
| 40 | | dffn3 6747 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) |
| 41 | 3, 40 | sylib 218 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶ran 𝐹) |
| 42 | 41, 38 | fssresd 6774 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹) |
| 43 | | fvres 6924 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ran 𝐺 → ((𝐹 ↾ ran 𝐺)‘𝑤) = (𝐹‘𝑤)) |
| 44 | 43 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ran 𝐺 → (𝐹‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑤)) |
| 45 | 44 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝐹‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑤)) |
| 46 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) |
| 47 | | fvres 6924 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ran 𝐺 → ((𝐹 ↾ ran 𝐺)‘𝑡) = (𝐹‘𝑡)) |
| 48 | 47 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → ((𝐹 ↾ ran 𝐺)‘𝑡) = (𝐹‘𝑡)) |
| 49 | 45, 46, 48 | 3eqtrd 2780 |
. . . . . . . . . 10
⊢ (((𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝐹‘𝑤) = (𝐹‘𝑡)) |
| 50 | 49 | 3adantl1 1166 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝐹‘𝑤) = (𝐹‘𝑡)) |
| 51 | | simpl1 1191 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → 𝜑) |
| 52 | | simpl3 1193 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → 𝑡 ∈ ran 𝐺) |
| 53 | | simpl2 1192 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → 𝑤 ∈ ran 𝐺) |
| 54 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑤) = (𝐹‘𝑡) → (𝐹‘𝑤) = (𝐹‘𝑡)) |
| 55 | 54 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑤) = (𝐹‘𝑡) → (𝐹‘𝑡) = (𝐹‘𝑤)) |
| 56 | 55 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → (𝐹‘𝑡) = (𝐹‘𝑤)) |
| 57 | | eleq1w 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑤 → (𝑏 ∈ ran 𝐺 ↔ 𝑤 ∈ ran 𝐺)) |
| 58 | 57 | 3anbi3d 1443 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑤 → ((𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺) ↔ (𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑤 ∈ ran 𝐺))) |
| 59 | | fveq2 6905 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑤 → (𝐹‘𝑏) = (𝐹‘𝑤)) |
| 60 | 59 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑤 → ((𝐹‘𝑡) = (𝐹‘𝑏) ↔ (𝐹‘𝑡) = (𝐹‘𝑤))) |
| 61 | 58, 60 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑤 → (((𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺) ∧ (𝐹‘𝑡) = (𝐹‘𝑏)) ↔ ((𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑤 ∈ ran 𝐺) ∧ (𝐹‘𝑡) = (𝐹‘𝑤)))) |
| 62 | | breq1 5145 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑤 → (𝑏𝑅𝑡 ↔ 𝑤𝑅𝑡)) |
| 63 | 62 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 𝑤 → (¬ 𝑏𝑅𝑡 ↔ ¬ 𝑤𝑅𝑡)) |
| 64 | 61, 63 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑤 → ((((𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺) ∧ (𝐹‘𝑡) = (𝐹‘𝑏)) → ¬ 𝑏𝑅𝑡) ↔ (((𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑤 ∈ ran 𝐺) ∧ (𝐹‘𝑡) = (𝐹‘𝑤)) → ¬ 𝑤𝑅𝑡))) |
| 65 | | eleq1w 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑡 → (𝑎 ∈ ran 𝐺 ↔ 𝑡 ∈ ran 𝐺)) |
| 66 | 65 | 3anbi2d 1442 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑡 → ((𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺) ↔ (𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺))) |
| 67 | | fveqeq2 6914 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑡 → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ (𝐹‘𝑡) = (𝐹‘𝑏))) |
| 68 | 66, 67 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑡 → (((𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ↔ ((𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺) ∧ (𝐹‘𝑡) = (𝐹‘𝑏)))) |
| 69 | | breq2 5146 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑡 → (𝑏𝑅𝑎 ↔ 𝑏𝑅𝑡)) |
| 70 | 69 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑡 → (¬ 𝑏𝑅𝑎 ↔ ¬ 𝑏𝑅𝑡)) |
| 71 | 68, 70 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑡 → ((((𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ¬ 𝑏𝑅𝑎) ↔ (((𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺) ∧ (𝐹‘𝑡) = (𝐹‘𝑏)) → ¬ 𝑏𝑅𝑡))) |
| 72 | | eleq1w 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑏 → (𝑡 ∈ ran 𝐺 ↔ 𝑏 ∈ ran 𝐺)) |
| 73 | 72 | 3anbi3d 1443 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑏 → ((𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ↔ (𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺))) |
| 74 | | fveq2 6905 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑏 → (𝐹‘𝑡) = (𝐹‘𝑏)) |
| 75 | 74 | eqeq2d 2747 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑏 → ((𝐹‘𝑎) = (𝐹‘𝑡) ↔ (𝐹‘𝑎) = (𝐹‘𝑏))) |
| 76 | 73, 75 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑏 → (((𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑎) = (𝐹‘𝑡)) ↔ ((𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)))) |
| 77 | | breq1 5145 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑏 → (𝑡𝑅𝑎 ↔ 𝑏𝑅𝑎)) |
| 78 | 77 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑏 → (¬ 𝑡𝑅𝑎 ↔ ¬ 𝑏𝑅𝑎)) |
| 79 | 76, 78 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑏 → ((((𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑎) = (𝐹‘𝑡)) → ¬ 𝑡𝑅𝑎) ↔ (((𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ¬ 𝑏𝑅𝑎))) |
| 80 | | eleq1w 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑎 → (𝑤 ∈ ran 𝐺 ↔ 𝑎 ∈ ran 𝐺)) |
| 81 | 80 | 3anbi2d 1442 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑎 → ((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ↔ (𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺))) |
| 82 | | fveqeq2 6914 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑎 → ((𝐹‘𝑤) = (𝐹‘𝑡) ↔ (𝐹‘𝑎) = (𝐹‘𝑡))) |
| 83 | 81, 82 | anbi12d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑎 → (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) ↔ ((𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑎) = (𝐹‘𝑡)))) |
| 84 | | breq2 5146 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑎 → (𝑡𝑅𝑤 ↔ 𝑡𝑅𝑎)) |
| 85 | 84 | notbid 318 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑎 → (¬ 𝑡𝑅𝑤 ↔ ¬ 𝑡𝑅𝑎)) |
| 86 | 83, 85 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑎 → ((((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → ¬ 𝑡𝑅𝑤) ↔ (((𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑎) = (𝐹‘𝑡)) → ¬ 𝑡𝑅𝑎))) |
| 87 | 36 | elrnmpt 5968 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ V → (𝑤 ∈ ran 𝐺 ↔ ∃𝑢 ∈ ran 𝐹 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))) |
| 88 | 87 | elv 3484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ ran 𝐺 ↔ ∃𝑢 ∈ ran 𝐹 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) |
| 89 | 88 | biimpi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ran 𝐺 → ∃𝑢 ∈ ran 𝐹 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) |
| 90 | 89 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ ran 𝐺 ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → ∃𝑢 ∈ ran 𝐹 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) |
| 91 | 90 | 3ad2antl2 1186 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → ∃𝑢 ∈ ran 𝐹 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) |
| 92 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) |
| 93 | 92 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = 𝑤) |
| 94 | | simp11 1203 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝜑) |
| 95 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) |
| 96 | | breq2 5146 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑣 = 𝑤 → (𝑡𝑅𝑣 ↔ 𝑡𝑅𝑤)) |
| 97 | 96 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑣 = 𝑤 → (¬ 𝑡𝑅𝑣 ↔ ¬ 𝑡𝑅𝑤)) |
| 98 | 97 | ralbidv 3177 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑣 = 𝑤 → (∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣 ↔ ∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)) |
| 99 | 98 | cbvriotavw 7399 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(℩𝑣
∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = (℩𝑤 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) |
| 100 | 95, 99 | eqtr2di 2793 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → (℩𝑤 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤) |
| 101 | 100 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (℩𝑤 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤) |
| 102 | 98 | cbvreuvw 3403 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∃!𝑣 ∈
(◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣 ↔ ∃!𝑤 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) |
| 103 | 16, 102 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → ∃!𝑤 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) |
| 104 | | riota1 7410 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(∃!𝑤 ∈
(◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 → ((𝑤 ∈ (◡𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) ↔ (℩𝑤 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤)) |
| 105 | 103, 104 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → ((𝑤 ∈ (◡𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) ↔ (℩𝑤 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤)) |
| 106 | 105 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ((𝑤 ∈ (◡𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) ↔ (℩𝑤 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤)) |
| 107 | 101, 106 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤 ∈ (◡𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)) |
| 108 | 107 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑤 ∈ (◡𝐹 “ {𝑢})) |
| 109 | 94, 108 | syld3an1 1411 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑤 ∈ (◡𝐹 “ {𝑢})) |
| 110 | | simp2 1137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑢 ∈ ran 𝐹) |
| 111 | 94, 110, 16 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ∃!𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) |
| 112 | 98 | riota2 7414 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ (◡𝐹 “ {𝑢}) ∧ ∃!𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → (∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 ↔ (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = 𝑤)) |
| 113 | 109, 111,
112 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 ↔ (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = 𝑤)) |
| 114 | 93, 113 | mpbird 257 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) |
| 115 | 114 | 3adant1r 1177 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) |
| 116 | 38 | sselda 3982 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ ran 𝐺) → 𝑡 ∈ 𝐴) |
| 117 | 116 | 3adant2 1131 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) → 𝑡 ∈ 𝐴) |
| 118 | 117 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → 𝑡 ∈ 𝐴) |
| 119 | 118 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑡 ∈ 𝐴) |
| 120 | 55 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) ∧ 𝑢 ∈ ran 𝐹) → (𝐹‘𝑡) = (𝐹‘𝑤)) |
| 121 | 120 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹‘𝑡) = (𝐹‘𝑤)) |
| 122 | | fniniseg 7079 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹 Fn 𝐴 → (𝑤 ∈ (◡𝐹 “ {𝑢}) ↔ (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) = 𝑢))) |
| 123 | 94, 3, 122 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤 ∈ (◡𝐹 “ {𝑢}) ↔ (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) = 𝑢))) |
| 124 | 109, 123 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) = 𝑢)) |
| 125 | 124 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹‘𝑤) = 𝑢) |
| 126 | 125 | 3adant1r 1177 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹‘𝑤) = 𝑢) |
| 127 | 121, 126 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹‘𝑡) = 𝑢) |
| 128 | | fniniseg 7079 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 Fn 𝐴 → (𝑡 ∈ (◡𝐹 “ {𝑢}) ↔ (𝑡 ∈ 𝐴 ∧ (𝐹‘𝑡) = 𝑢))) |
| 129 | 3, 128 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑡 ∈ (◡𝐹 “ {𝑢}) ↔ (𝑡 ∈ 𝐴 ∧ (𝐹‘𝑡) = 𝑢))) |
| 130 | 129 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) → (𝑡 ∈ (◡𝐹 “ {𝑢}) ↔ (𝑡 ∈ 𝐴 ∧ (𝐹‘𝑡) = 𝑢))) |
| 131 | 130 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) ∧ 𝑢 ∈ ran 𝐹) → (𝑡 ∈ (◡𝐹 “ {𝑢}) ↔ (𝑡 ∈ 𝐴 ∧ (𝐹‘𝑡) = 𝑢))) |
| 132 | 131 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑡 ∈ (◡𝐹 “ {𝑢}) ↔ (𝑡 ∈ 𝐴 ∧ (𝐹‘𝑡) = 𝑢))) |
| 133 | 119, 127,
132 | mpbir2and 713 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑡 ∈ (◡𝐹 “ {𝑢})) |
| 134 | | rspa 3247 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑡 ∈
(◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 ∧ 𝑡 ∈ (◡𝐹 “ {𝑢})) → ¬ 𝑡𝑅𝑤) |
| 135 | 115, 133,
134 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) ∧ 𝑢 ∈ ran 𝐹 ∧ 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ¬ 𝑡𝑅𝑤) |
| 136 | 135 | rexlimdv3a 3158 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → (∃𝑢 ∈ ran 𝐹 𝑤 = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → ¬ 𝑡𝑅𝑤)) |
| 137 | 91, 136 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → ¬ 𝑡𝑅𝑤) |
| 138 | 86, 137 | chvarvv 1997 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑎) = (𝐹‘𝑡)) → ¬ 𝑡𝑅𝑎) |
| 139 | 79, 138 | chvarvv 1997 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺) ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ¬ 𝑏𝑅𝑎) |
| 140 | 71, 139 | chvarvv 1997 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑏 ∈ ran 𝐺) ∧ (𝐹‘𝑡) = (𝐹‘𝑏)) → ¬ 𝑏𝑅𝑡) |
| 141 | 64, 140 | chvarvv 1997 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ ran 𝐺 ∧ 𝑤 ∈ ran 𝐺) ∧ (𝐹‘𝑡) = (𝐹‘𝑤)) → ¬ 𝑤𝑅𝑡) |
| 142 | 51, 52, 53, 56, 141 | syl31anc 1374 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → ¬ 𝑤𝑅𝑡) |
| 143 | | weso 5675 |
. . . . . . . . . . . . . 14
⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| 144 | 7, 143 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 Or 𝐴) |
| 145 | 144 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → 𝑅 Or 𝐴) |
| 146 | 145 | 3ad2antl1 1185 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → 𝑅 Or 𝐴) |
| 147 | 38 | sselda 3982 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐺) → 𝑤 ∈ 𝐴) |
| 148 | 147 | 3adant3 1132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) → 𝑤 ∈ 𝐴) |
| 149 | 148 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → 𝑤 ∈ 𝐴) |
| 150 | | sotrieq2 5623 |
. . . . . . . . . . 11
⊢ ((𝑅 Or 𝐴 ∧ (𝑤 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴)) → (𝑤 = 𝑡 ↔ (¬ 𝑤𝑅𝑡 ∧ ¬ 𝑡𝑅𝑤))) |
| 151 | 146, 149,
118, 150 | syl12anc 836 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → (𝑤 = 𝑡 ↔ (¬ 𝑤𝑅𝑡 ∧ ¬ 𝑡𝑅𝑤))) |
| 152 | 142, 137,
151 | mpbir2and 713 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ (𝐹‘𝑤) = (𝐹‘𝑡)) → 𝑤 = 𝑡) |
| 153 | 50, 152 | syldan 591 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → 𝑤 = 𝑡) |
| 154 | 153 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺) → (((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡)) |
| 155 | 154 | 3expb 1120 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ ran 𝐺 ∧ 𝑡 ∈ ran 𝐺)) → (((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡)) |
| 156 | 155 | ralrimivva 3201 |
. . . . 5
⊢ (𝜑 → ∀𝑤 ∈ ran 𝐺∀𝑡 ∈ ran 𝐺(((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡)) |
| 157 | | dff13 7276 |
. . . . 5
⊢ ((𝐹 ↾ ran 𝐺):ran 𝐺–1-1→ran 𝐹 ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹 ∧ ∀𝑤 ∈ ran 𝐺∀𝑡 ∈ ran 𝐺(((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡))) |
| 158 | 42, 156, 157 | sylanbrc 583 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺–1-1→ran 𝐹) |
| 159 | | riotaex 7393 |
. . . . . . . . . . 11
⊢
(℩𝑣
∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V |
| 160 | 159 | rgenw 3064 |
. . . . . . . . . 10
⊢
∀𝑢 ∈ ran
𝐹(℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V |
| 161 | 36 | fnmpt 6707 |
. . . . . . . . . 10
⊢
(∀𝑢 ∈
ran 𝐹(℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V → 𝐺 Fn ran 𝐹) |
| 162 | 160, 161 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 Fn ran 𝐹) |
| 163 | | dffn3 6747 |
. . . . . . . . 9
⊢ (𝐺 Fn ran 𝐹 ↔ 𝐺:ran 𝐹⟶ran 𝐺) |
| 164 | 162, 163 | sylib 218 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ran 𝐹⟶ran 𝐺) |
| 165 | 164 | ffvelcdmda 7103 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → (𝐺‘𝑢) ∈ ran 𝐺) |
| 166 | 165 | fvresd 6925 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → ((𝐹 ↾ ran 𝐺)‘(𝐺‘𝑢)) = (𝐹‘(𝐺‘𝑢))) |
| 167 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → 𝑢 ∈ ran 𝐹) |
| 168 | 159 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V) |
| 169 | 21, 34, 167, 168 | fvmptd3 7038 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → (𝐺‘𝑢) = (℩𝑣 ∈ (◡𝐹 “ {𝑢})∀𝑡 ∈ (◡𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) |
| 170 | 169, 18 | eqeltrd 2840 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → (𝐺‘𝑢) ∈ (◡𝐹 “ {𝑢})) |
| 171 | | fvex 6918 |
. . . . . . . . . . . 12
⊢ (𝐺‘𝑢) ∈ V |
| 172 | | eleq1 2828 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝐺‘𝑢) → (𝑤 ∈ (◡𝐹 “ {𝑢}) ↔ (𝐺‘𝑢) ∈ (◡𝐹 “ {𝑢}))) |
| 173 | | eleq1 2828 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐺‘𝑢) → (𝑤 ∈ 𝐴 ↔ (𝐺‘𝑢) ∈ 𝐴)) |
| 174 | | fveqeq2 6914 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (𝐺‘𝑢) → ((𝐹‘𝑤) = 𝑢 ↔ (𝐹‘(𝐺‘𝑢)) = 𝑢)) |
| 175 | 173, 174 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝐺‘𝑢) → ((𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) = 𝑢) ↔ ((𝐺‘𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝑢)) = 𝑢))) |
| 176 | 172, 175 | bibi12d 345 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐺‘𝑢) → ((𝑤 ∈ (◡𝐹 “ {𝑢}) ↔ (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) = 𝑢)) ↔ ((𝐺‘𝑢) ∈ (◡𝐹 “ {𝑢}) ↔ ((𝐺‘𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝑢)) = 𝑢)))) |
| 177 | 176 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐺‘𝑢) → ((𝜑 → (𝑤 ∈ (◡𝐹 “ {𝑢}) ↔ (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) = 𝑢))) ↔ (𝜑 → ((𝐺‘𝑢) ∈ (◡𝐹 “ {𝑢}) ↔ ((𝐺‘𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝑢)) = 𝑢))))) |
| 178 | 3, 122 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑤 ∈ (◡𝐹 “ {𝑢}) ↔ (𝑤 ∈ 𝐴 ∧ (𝐹‘𝑤) = 𝑢))) |
| 179 | 171, 177,
178 | vtocl 3557 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐺‘𝑢) ∈ (◡𝐹 “ {𝑢}) ↔ ((𝐺‘𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝑢)) = 𝑢))) |
| 180 | 179 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → ((𝐺‘𝑢) ∈ (◡𝐹 “ {𝑢}) ↔ ((𝐺‘𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝑢)) = 𝑢))) |
| 181 | 170, 180 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → ((𝐺‘𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺‘𝑢)) = 𝑢)) |
| 182 | 181 | simprd 495 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → (𝐹‘(𝐺‘𝑢)) = 𝑢) |
| 183 | 166, 182 | eqtr2d 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → 𝑢 = ((𝐹 ↾ ran 𝐺)‘(𝐺‘𝑢))) |
| 184 | | fveq2 6905 |
. . . . . . . 8
⊢ (𝑤 = (𝐺‘𝑢) → ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘(𝐺‘𝑢))) |
| 185 | 184 | rspceeqv 3644 |
. . . . . . 7
⊢ (((𝐺‘𝑢) ∈ ran 𝐺 ∧ 𝑢 = ((𝐹 ↾ ran 𝐺)‘(𝐺‘𝑢))) → ∃𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤)) |
| 186 | 165, 183,
185 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ran 𝐹) → ∃𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤)) |
| 187 | 186 | ralrimiva 3145 |
. . . . 5
⊢ (𝜑 → ∀𝑢 ∈ ran 𝐹∃𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤)) |
| 188 | | dffo3 7121 |
. . . . 5
⊢ ((𝐹 ↾ ran 𝐺):ran 𝐺–onto→ran 𝐹 ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹 ∧ ∀𝑢 ∈ ran 𝐹∃𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤))) |
| 189 | 42, 187, 188 | sylanbrc 583 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺–onto→ran 𝐹) |
| 190 | | df-f1o 6567 |
. . . 4
⊢ ((𝐹 ↾ ran 𝐺):ran 𝐺–1-1-onto→ran
𝐹 ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺–1-1→ran 𝐹 ∧ (𝐹 ↾ ran 𝐺):ran 𝐺–onto→ran 𝐹)) |
| 191 | 158, 189,
190 | sylanbrc 583 |
. . 3
⊢ (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺–1-1-onto→ran
𝐹) |
| 192 | | reseq2 5991 |
. . . . 5
⊢ (𝑣 = ran 𝐺 → (𝐹 ↾ 𝑣) = (𝐹 ↾ ran 𝐺)) |
| 193 | | id 22 |
. . . . 5
⊢ (𝑣 = ran 𝐺 → 𝑣 = ran 𝐺) |
| 194 | | eqidd 2737 |
. . . . 5
⊢ (𝑣 = ran 𝐺 → ran 𝐹 = ran 𝐹) |
| 195 | 192, 193,
194 | f1oeq123d 6841 |
. . . 4
⊢ (𝑣 = ran 𝐺 → ((𝐹 ↾ 𝑣):𝑣–1-1-onto→ran
𝐹 ↔ (𝐹 ↾ ran 𝐺):ran 𝐺–1-1-onto→ran
𝐹)) |
| 196 | 195 | rspcev 3621 |
. . 3
⊢ ((ran
𝐺 ∈ 𝒫 𝐴 ∧ (𝐹 ↾ ran 𝐺):ran 𝐺–1-1-onto→ran
𝐹) → ∃𝑣 ∈ 𝒫 𝐴(𝐹 ↾ 𝑣):𝑣–1-1-onto→ran
𝐹) |
| 197 | 39, 191, 196 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑣 ∈ 𝒫 𝐴(𝐹 ↾ 𝑣):𝑣–1-1-onto→ran
𝐹) |
| 198 | | reseq2 5991 |
. . . 4
⊢ (𝑣 = 𝑥 → (𝐹 ↾ 𝑣) = (𝐹 ↾ 𝑥)) |
| 199 | | id 22 |
. . . 4
⊢ (𝑣 = 𝑥 → 𝑣 = 𝑥) |
| 200 | | eqidd 2737 |
. . . 4
⊢ (𝑣 = 𝑥 → ran 𝐹 = ran 𝐹) |
| 201 | 198, 199,
200 | f1oeq123d 6841 |
. . 3
⊢ (𝑣 = 𝑥 → ((𝐹 ↾ 𝑣):𝑣–1-1-onto→ran
𝐹 ↔ (𝐹 ↾ 𝑥):𝑥–1-1-onto→ran
𝐹)) |
| 202 | 201 | cbvrexvw 3237 |
. 2
⊢
(∃𝑣 ∈
𝒫 𝐴(𝐹 ↾ 𝑣):𝑣–1-1-onto→ran
𝐹 ↔ ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→ran
𝐹) |
| 203 | 197, 202 | sylib 218 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→ran
𝐹) |