Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wessf1ornlem Structured version   Visualization version   GIF version

Theorem wessf1ornlem 45189
Description: Given a function 𝐹 on a well-ordered domain 𝐴 there exists a subset of 𝐴 such that 𝐹 restricted to such subset is injective and onto the range of 𝐹 (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
wessf1ornlem.f (𝜑𝐹 Fn 𝐴)
wessf1ornlem.a (𝜑𝐴𝑉)
wessf1ornlem.r (𝜑𝑅 We 𝐴)
wessf1ornlem.g 𝐺 = (𝑦 ∈ ran 𝐹 ↦ (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥))
Assertion
Ref Expression
wessf1ornlem (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto→ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem wessf1ornlem
Dummy variables 𝑡 𝑢 𝑣 𝑤 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wessf1ornlem.a . . . 4 (𝜑𝐴𝑉)
2 cnvimass 6074 . . . . . . . 8 (𝐹 “ {𝑢}) ⊆ dom 𝐹
3 wessf1ornlem.f . . . . . . . . . 10 (𝜑𝐹 Fn 𝐴)
43fndmd 6648 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐴)
54adantr 480 . . . . . . . 8 ((𝜑𝑢 ∈ ran 𝐹) → dom 𝐹 = 𝐴)
62, 5sseqtrid 4006 . . . . . . 7 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹 “ {𝑢}) ⊆ 𝐴)
7 wessf1ornlem.r . . . . . . . . . 10 (𝜑𝑅 We 𝐴)
87adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → 𝑅 We 𝐴)
92, 4sseqtrid 4006 . . . . . . . . . . 11 (𝜑 → (𝐹 “ {𝑢}) ⊆ 𝐴)
101, 9ssexd 5299 . . . . . . . . . 10 (𝜑 → (𝐹 “ {𝑢}) ∈ V)
1110adantr 480 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹 “ {𝑢}) ∈ V)
12 inisegn0 6090 . . . . . . . . . . 11 (𝑢 ∈ ran 𝐹 ↔ (𝐹 “ {𝑢}) ≠ ∅)
1312biimpi 216 . . . . . . . . . 10 (𝑢 ∈ ran 𝐹 → (𝐹 “ {𝑢}) ≠ ∅)
1413adantl 481 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹 “ {𝑢}) ≠ ∅)
15 wereu 5655 . . . . . . . . 9 ((𝑅 We 𝐴 ∧ ((𝐹 “ {𝑢}) ∈ V ∧ (𝐹 “ {𝑢}) ⊆ 𝐴 ∧ (𝐹 “ {𝑢}) ≠ ∅)) → ∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
168, 11, 6, 14, 15syl13anc 1374 . . . . . . . 8 ((𝜑𝑢 ∈ ran 𝐹) → ∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
17 riotacl 7384 . . . . . . . 8 (∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣 → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ (𝐹 “ {𝑢}))
1816, 17syl 17 . . . . . . 7 ((𝜑𝑢 ∈ ran 𝐹) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ (𝐹 “ {𝑢}))
196, 18sseldd 3964 . . . . . 6 ((𝜑𝑢 ∈ ran 𝐹) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ 𝐴)
2019ralrimiva 3133 . . . . 5 (𝜑 → ∀𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ 𝐴)
21 wessf1ornlem.g . . . . . . 7 𝐺 = (𝑦 ∈ ran 𝐹 ↦ (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥))
22 sneq 4616 . . . . . . . . . . 11 (𝑦 = 𝑢 → {𝑦} = {𝑢})
2322imaeq2d 6052 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐹 “ {𝑦}) = (𝐹 “ {𝑢}))
2423raleqdv 3309 . . . . . . . . . 10 (𝑦 = 𝑢 → (∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥))
2523, 24riotaeqbidv 7370 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥) = (𝑥 ∈ (𝐹 “ {𝑢})∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥))
26 breq1 5127 . . . . . . . . . . . . 13 (𝑧 = 𝑡 → (𝑧𝑅𝑥𝑡𝑅𝑥))
2726notbid 318 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (¬ 𝑧𝑅𝑥 ↔ ¬ 𝑡𝑅𝑥))
2827cbvralvw 3224 . . . . . . . . . . 11 (∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑥)
29 breq2 5128 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → (𝑡𝑅𝑥𝑡𝑅𝑣))
3029notbid 318 . . . . . . . . . . . 12 (𝑥 = 𝑣 → (¬ 𝑡𝑅𝑥 ↔ ¬ 𝑡𝑅𝑣))
3130ralbidv 3164 . . . . . . . . . . 11 (𝑥 = 𝑣 → (∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑥 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
3228, 31bitrid 283 . . . . . . . . . 10 (𝑥 = 𝑣 → (∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
3332cbvriotavw 7377 . . . . . . . . 9 (𝑥 ∈ (𝐹 “ {𝑢})∀𝑧 ∈ (𝐹 “ {𝑢}) ¬ 𝑧𝑅𝑥) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
3425, 33eqtrdi 2787 . . . . . . . 8 (𝑦 = 𝑢 → (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
3534cbvmptv 5230 . . . . . . 7 (𝑦 ∈ ran 𝐹 ↦ (𝑥 ∈ (𝐹 “ {𝑦})∀𝑧 ∈ (𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) = (𝑢 ∈ ran 𝐹 ↦ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
3621, 35eqtri 2759 . . . . . 6 𝐺 = (𝑢 ∈ ran 𝐹 ↦ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
3736rnmptss 7118 . . . . 5 (∀𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ 𝐴 → ran 𝐺𝐴)
3820, 37syl 17 . . . 4 (𝜑 → ran 𝐺𝐴)
391, 38sselpwd 5303 . . 3 (𝜑 → ran 𝐺 ∈ 𝒫 𝐴)
40 dffn3 6723 . . . . . . 7 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
413, 40sylib 218 . . . . . 6 (𝜑𝐹:𝐴⟶ran 𝐹)
4241, 38fssresd 6750 . . . . 5 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹)
43 fvres 6900 . . . . . . . . . . . . 13 (𝑤 ∈ ran 𝐺 → ((𝐹 ↾ ran 𝐺)‘𝑤) = (𝐹𝑤))
4443eqcomd 2742 . . . . . . . . . . . 12 (𝑤 ∈ ran 𝐺 → (𝐹𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑤))
4544ad2antrr 726 . . . . . . . . . . 11 (((𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝐹𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑤))
46 simpr 484 . . . . . . . . . . 11 (((𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡))
47 fvres 6900 . . . . . . . . . . . 12 (𝑡 ∈ ran 𝐺 → ((𝐹 ↾ ran 𝐺)‘𝑡) = (𝐹𝑡))
4847ad2antlr 727 . . . . . . . . . . 11 (((𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → ((𝐹 ↾ ran 𝐺)‘𝑡) = (𝐹𝑡))
4945, 46, 483eqtrd 2775 . . . . . . . . . 10 (((𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝐹𝑤) = (𝐹𝑡))
50493adantl1 1167 . . . . . . . . 9 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → (𝐹𝑤) = (𝐹𝑡))
51 simpl1 1192 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝜑)
52 simpl3 1194 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑡 ∈ ran 𝐺)
53 simpl2 1193 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑤 ∈ ran 𝐺)
54 id 22 . . . . . . . . . . . . 13 ((𝐹𝑤) = (𝐹𝑡) → (𝐹𝑤) = (𝐹𝑡))
5554eqcomd 2742 . . . . . . . . . . . 12 ((𝐹𝑤) = (𝐹𝑡) → (𝐹𝑡) = (𝐹𝑤))
5655adantl 481 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (𝐹𝑡) = (𝐹𝑤))
57 eleq1w 2818 . . . . . . . . . . . . . . 15 (𝑏 = 𝑤 → (𝑏 ∈ ran 𝐺𝑤 ∈ ran 𝐺))
58573anbi3d 1444 . . . . . . . . . . . . . 14 (𝑏 = 𝑤 → ((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ↔ (𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺)))
59 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑏 = 𝑤 → (𝐹𝑏) = (𝐹𝑤))
6059eqeq2d 2747 . . . . . . . . . . . . . 14 (𝑏 = 𝑤 → ((𝐹𝑡) = (𝐹𝑏) ↔ (𝐹𝑡) = (𝐹𝑤)))
6158, 60anbi12d 632 . . . . . . . . . . . . 13 (𝑏 = 𝑤 → (((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏)) ↔ ((𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑤))))
62 breq1 5127 . . . . . . . . . . . . . 14 (𝑏 = 𝑤 → (𝑏𝑅𝑡𝑤𝑅𝑡))
6362notbid 318 . . . . . . . . . . . . 13 (𝑏 = 𝑤 → (¬ 𝑏𝑅𝑡 ↔ ¬ 𝑤𝑅𝑡))
6461, 63imbi12d 344 . . . . . . . . . . . 12 (𝑏 = 𝑤 → ((((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑡) ↔ (((𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑤)) → ¬ 𝑤𝑅𝑡)))
65 eleq1w 2818 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑡 → (𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺))
66653anbi2d 1443 . . . . . . . . . . . . . . 15 (𝑎 = 𝑡 → ((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ↔ (𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺)))
67 fveqeq2 6890 . . . . . . . . . . . . . . 15 (𝑎 = 𝑡 → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝐹𝑡) = (𝐹𝑏)))
6866, 67anbi12d 632 . . . . . . . . . . . . . 14 (𝑎 = 𝑡 → (((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏)) ↔ ((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏))))
69 breq2 5128 . . . . . . . . . . . . . . 15 (𝑎 = 𝑡 → (𝑏𝑅𝑎𝑏𝑅𝑡))
7069notbid 318 . . . . . . . . . . . . . 14 (𝑎 = 𝑡 → (¬ 𝑏𝑅𝑎 ↔ ¬ 𝑏𝑅𝑡))
7168, 70imbi12d 344 . . . . . . . . . . . . 13 (𝑎 = 𝑡 → ((((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑎) ↔ (((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑡)))
72 eleq1w 2818 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑏 → (𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺))
73723anbi3d 1444 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑏 → ((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ↔ (𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺)))
74 fveq2 6881 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑏 → (𝐹𝑡) = (𝐹𝑏))
7574eqeq2d 2747 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑏 → ((𝐹𝑎) = (𝐹𝑡) ↔ (𝐹𝑎) = (𝐹𝑏)))
7673, 75anbi12d 632 . . . . . . . . . . . . . . 15 (𝑡 = 𝑏 → (((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡)) ↔ ((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏))))
77 breq1 5127 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑏 → (𝑡𝑅𝑎𝑏𝑅𝑎))
7877notbid 318 . . . . . . . . . . . . . . 15 (𝑡 = 𝑏 → (¬ 𝑡𝑅𝑎 ↔ ¬ 𝑏𝑅𝑎))
7976, 78imbi12d 344 . . . . . . . . . . . . . 14 (𝑡 = 𝑏 → ((((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑎) ↔ (((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑎)))
80 eleq1w 2818 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑎 → (𝑤 ∈ ran 𝐺𝑎 ∈ ran 𝐺))
81803anbi2d 1443 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑎 → ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ↔ (𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺)))
82 fveqeq2 6890 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑎 → ((𝐹𝑤) = (𝐹𝑡) ↔ (𝐹𝑎) = (𝐹𝑡)))
8381, 82anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑎 → (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ↔ ((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡))))
84 breq2 5128 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑎 → (𝑡𝑅𝑤𝑡𝑅𝑎))
8584notbid 318 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑎 → (¬ 𝑡𝑅𝑤 ↔ ¬ 𝑡𝑅𝑎))
8683, 85imbi12d 344 . . . . . . . . . . . . . . 15 (𝑤 = 𝑎 → ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑤) ↔ (((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑎)))
8736elrnmpt 5943 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ V → (𝑤 ∈ ran 𝐺 ↔ ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)))
8887elv 3469 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ran 𝐺 ↔ ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
8988biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ran 𝐺 → ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
9089adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ran 𝐺 ∧ (𝐹𝑤) = (𝐹𝑡)) → ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
91903ad2antl2 1187 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → ∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
92 simp3 1138 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
9392eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = 𝑤)
94 simp11 1204 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝜑)
95 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
96 breq2 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑣 = 𝑤 → (𝑡𝑅𝑣𝑡𝑅𝑤))
9796notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 = 𝑤 → (¬ 𝑡𝑅𝑣 ↔ ¬ 𝑡𝑅𝑤))
9897ralbidv 3164 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑣 = 𝑤 → (∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣 ↔ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤))
9998cbvriotavw 7377 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
10095, 99eqtr2di 2788 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤)
1011003ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤)
10298cbvreuvw 3388 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣 ↔ ∃!𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
10316, 102sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ ran 𝐹) → ∃!𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
104 riota1 7388 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃!𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 → ((𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) ↔ (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤))
105103, 104syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ ran 𝐹) → ((𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) ↔ (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤))
1061053adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ((𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) ↔ (𝑤 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤) = 𝑤))
107101, 106mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤))
108107simpld 494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑤 ∈ (𝐹 “ {𝑢}))
10994, 108syld3an1 1412 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑤 ∈ (𝐹 “ {𝑢}))
110 simp2 1137 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑢 ∈ ran 𝐹)
11194, 110, 16syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)
11298riota2 7392 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ (𝐹 “ {𝑢}) ∧ ∃!𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → (∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 ↔ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = 𝑤))
113109, 111, 112syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤 ↔ (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) = 𝑤))
11493, 113mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
1151143adant1r 1178 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤)
11638sselda 3963 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑡 ∈ ran 𝐺) → 𝑡𝐴)
1171163adant2 1131 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) → 𝑡𝐴)
118117adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑡𝐴)
1191183ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑡𝐴)
12055ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹) → (𝐹𝑡) = (𝐹𝑤))
1211203adant3 1132 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹𝑡) = (𝐹𝑤))
122 fniniseg 7055 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 Fn 𝐴 → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢)))
12394, 3, 1223syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢)))
124109, 123mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢))
125124simprd 495 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹𝑤) = 𝑢)
1261253adant1r 1178 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹𝑤) = 𝑢)
127121, 126eqtrd 2771 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝐹𝑡) = 𝑢)
128 fniniseg 7055 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 Fn 𝐴 → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
1293, 128syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
1301293ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
131130ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹) → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
1321313adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → (𝑡 ∈ (𝐹 “ {𝑢}) ↔ (𝑡𝐴 ∧ (𝐹𝑡) = 𝑢)))
133119, 127, 132mpbir2and 713 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → 𝑡 ∈ (𝐹 “ {𝑢}))
134 rspa 3235 . . . . . . . . . . . . . . . . . 18 ((∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑤𝑡 ∈ (𝐹 “ {𝑢})) → ¬ 𝑡𝑅𝑤)
135115, 133, 134syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) ∧ 𝑢 ∈ ran 𝐹𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣)) → ¬ 𝑡𝑅𝑤)
136135rexlimdv3a 3146 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (∃𝑢 ∈ ran 𝐹 𝑤 = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) → ¬ 𝑡𝑅𝑤))
13791, 136mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑤)
13886, 137chvarvv 1989 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑡)) → ¬ 𝑡𝑅𝑎)
13979, 138chvarvv 1989 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑎) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑎)
14071, 139chvarvv 1989 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ran 𝐺𝑏 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑏)) → ¬ 𝑏𝑅𝑡)
14164, 140chvarvv 1989 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ran 𝐺𝑤 ∈ ran 𝐺) ∧ (𝐹𝑡) = (𝐹𝑤)) → ¬ 𝑤𝑅𝑡)
14251, 52, 53, 56, 141syl31anc 1375 . . . . . . . . . 10 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → ¬ 𝑤𝑅𝑡)
143 weso 5650 . . . . . . . . . . . . . 14 (𝑅 We 𝐴𝑅 Or 𝐴)
1447, 143syl 17 . . . . . . . . . . . . 13 (𝜑𝑅 Or 𝐴)
145144adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑅 Or 𝐴)
1461453ad2antl1 1186 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑅 Or 𝐴)
14738sselda 3963 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ ran 𝐺) → 𝑤𝐴)
1481473adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) → 𝑤𝐴)
149148adantr 480 . . . . . . . . . . 11 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑤𝐴)
150 sotrieq2 5598 . . . . . . . . . . 11 ((𝑅 Or 𝐴 ∧ (𝑤𝐴𝑡𝐴)) → (𝑤 = 𝑡 ↔ (¬ 𝑤𝑅𝑡 ∧ ¬ 𝑡𝑅𝑤)))
151146, 149, 118, 150syl12anc 836 . . . . . . . . . 10 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → (𝑤 = 𝑡 ↔ (¬ 𝑤𝑅𝑡 ∧ ¬ 𝑡𝑅𝑤)))
152142, 137, 151mpbir2and 713 . . . . . . . . 9 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ (𝐹𝑤) = (𝐹𝑡)) → 𝑤 = 𝑡)
15350, 152syldan 591 . . . . . . . 8 (((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) ∧ ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡)) → 𝑤 = 𝑡)
154153ex 412 . . . . . . 7 ((𝜑𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺) → (((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡))
1551543expb 1120 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺)) → (((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡))
156155ralrimivva 3188 . . . . 5 (𝜑 → ∀𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺(((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡))
157 dff13 7252 . . . . 5 ((𝐹 ↾ ran 𝐺):ran 𝐺1-1→ran 𝐹 ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹 ∧ ∀𝑤 ∈ ran 𝐺𝑡 ∈ ran 𝐺(((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘𝑡) → 𝑤 = 𝑡)))
15842, 156, 157sylanbrc 583 . . . 4 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺1-1→ran 𝐹)
159 riotaex 7371 . . . . . . . . . . 11 (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V
160159rgenw 3056 . . . . . . . . . 10 𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V
16136fnmpt 6683 . . . . . . . . . 10 (∀𝑢 ∈ ran 𝐹(𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V → 𝐺 Fn ran 𝐹)
162160, 161mp1i 13 . . . . . . . . 9 (𝜑𝐺 Fn ran 𝐹)
163 dffn3 6723 . . . . . . . . 9 (𝐺 Fn ran 𝐹𝐺:ran 𝐹⟶ran 𝐺)
164162, 163sylib 218 . . . . . . . 8 (𝜑𝐺:ran 𝐹⟶ran 𝐺)
165164ffvelcdmda 7079 . . . . . . 7 ((𝜑𝑢 ∈ ran 𝐹) → (𝐺𝑢) ∈ ran 𝐺)
166165fvresd 6901 . . . . . . . 8 ((𝜑𝑢 ∈ ran 𝐹) → ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢)) = (𝐹‘(𝐺𝑢)))
167 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ ran 𝐹) → 𝑢 ∈ ran 𝐹)
168159a1i 11 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ ran 𝐹) → (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣) ∈ V)
16921, 34, 167, 168fvmptd3 7014 . . . . . . . . . . 11 ((𝜑𝑢 ∈ ran 𝐹) → (𝐺𝑢) = (𝑣 ∈ (𝐹 “ {𝑢})∀𝑡 ∈ (𝐹 “ {𝑢}) ¬ 𝑡𝑅𝑣))
170169, 18eqeltrd 2835 . . . . . . . . . 10 ((𝜑𝑢 ∈ ran 𝐹) → (𝐺𝑢) ∈ (𝐹 “ {𝑢}))
171 fvex 6894 . . . . . . . . . . . 12 (𝐺𝑢) ∈ V
172 eleq1 2823 . . . . . . . . . . . . . 14 (𝑤 = (𝐺𝑢) → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝐺𝑢) ∈ (𝐹 “ {𝑢})))
173 eleq1 2823 . . . . . . . . . . . . . . 15 (𝑤 = (𝐺𝑢) → (𝑤𝐴 ↔ (𝐺𝑢) ∈ 𝐴))
174 fveqeq2 6890 . . . . . . . . . . . . . . 15 (𝑤 = (𝐺𝑢) → ((𝐹𝑤) = 𝑢 ↔ (𝐹‘(𝐺𝑢)) = 𝑢))
175173, 174anbi12d 632 . . . . . . . . . . . . . 14 (𝑤 = (𝐺𝑢) → ((𝑤𝐴 ∧ (𝐹𝑤) = 𝑢) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢)))
176172, 175bibi12d 345 . . . . . . . . . . . . 13 (𝑤 = (𝐺𝑢) → ((𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢)) ↔ ((𝐺𝑢) ∈ (𝐹 “ {𝑢}) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢))))
177176imbi2d 340 . . . . . . . . . . . 12 (𝑤 = (𝐺𝑢) → ((𝜑 → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢))) ↔ (𝜑 → ((𝐺𝑢) ∈ (𝐹 “ {𝑢}) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢)))))
1783, 122syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (𝐹 “ {𝑢}) ↔ (𝑤𝐴 ∧ (𝐹𝑤) = 𝑢)))
179171, 177, 178vtocl 3542 . . . . . . . . . . 11 (𝜑 → ((𝐺𝑢) ∈ (𝐹 “ {𝑢}) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢)))
180179adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ ran 𝐹) → ((𝐺𝑢) ∈ (𝐹 “ {𝑢}) ↔ ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢)))
181170, 180mpbid 232 . . . . . . . . 9 ((𝜑𝑢 ∈ ran 𝐹) → ((𝐺𝑢) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑢)) = 𝑢))
182181simprd 495 . . . . . . . 8 ((𝜑𝑢 ∈ ran 𝐹) → (𝐹‘(𝐺𝑢)) = 𝑢)
183166, 182eqtr2d 2772 . . . . . . 7 ((𝜑𝑢 ∈ ran 𝐹) → 𝑢 = ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢)))
184 fveq2 6881 . . . . . . . 8 (𝑤 = (𝐺𝑢) → ((𝐹 ↾ ran 𝐺)‘𝑤) = ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢)))
185184rspceeqv 3629 . . . . . . 7 (((𝐺𝑢) ∈ ran 𝐺𝑢 = ((𝐹 ↾ ran 𝐺)‘(𝐺𝑢))) → ∃𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤))
186165, 183, 185syl2anc 584 . . . . . 6 ((𝜑𝑢 ∈ ran 𝐹) → ∃𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤))
187186ralrimiva 3133 . . . . 5 (𝜑 → ∀𝑢 ∈ ran 𝐹𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤))
188 dffo3 7097 . . . . 5 ((𝐹 ↾ ran 𝐺):ran 𝐺onto→ran 𝐹 ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺⟶ran 𝐹 ∧ ∀𝑢 ∈ ran 𝐹𝑤 ∈ ran 𝐺 𝑢 = ((𝐹 ↾ ran 𝐺)‘𝑤)))
18942, 187, 188sylanbrc 583 . . . 4 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺onto→ran 𝐹)
190 df-f1o 6543 . . . 4 ((𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹 ↔ ((𝐹 ↾ ran 𝐺):ran 𝐺1-1→ran 𝐹 ∧ (𝐹 ↾ ran 𝐺):ran 𝐺onto→ran 𝐹))
191158, 189, 190sylanbrc 583 . . 3 (𝜑 → (𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹)
192 reseq2 5966 . . . . 5 (𝑣 = ran 𝐺 → (𝐹𝑣) = (𝐹 ↾ ran 𝐺))
193 id 22 . . . . 5 (𝑣 = ran 𝐺𝑣 = ran 𝐺)
194 eqidd 2737 . . . . 5 (𝑣 = ran 𝐺 → ran 𝐹 = ran 𝐹)
195192, 193, 194f1oeq123d 6817 . . . 4 (𝑣 = ran 𝐺 → ((𝐹𝑣):𝑣1-1-onto→ran 𝐹 ↔ (𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹))
196195rspcev 3606 . . 3 ((ran 𝐺 ∈ 𝒫 𝐴 ∧ (𝐹 ↾ ran 𝐺):ran 𝐺1-1-onto→ran 𝐹) → ∃𝑣 ∈ 𝒫 𝐴(𝐹𝑣):𝑣1-1-onto→ran 𝐹)
19739, 191, 196syl2anc 584 . 2 (𝜑 → ∃𝑣 ∈ 𝒫 𝐴(𝐹𝑣):𝑣1-1-onto→ran 𝐹)
198 reseq2 5966 . . . 4 (𝑣 = 𝑥 → (𝐹𝑣) = (𝐹𝑥))
199 id 22 . . . 4 (𝑣 = 𝑥𝑣 = 𝑥)
200 eqidd 2737 . . . 4 (𝑣 = 𝑥 → ran 𝐹 = ran 𝐹)
201198, 199, 200f1oeq123d 6817 . . 3 (𝑣 = 𝑥 → ((𝐹𝑣):𝑣1-1-onto→ran 𝐹 ↔ (𝐹𝑥):𝑥1-1-onto→ran 𝐹))
202201cbvrexvw 3225 . 2 (∃𝑣 ∈ 𝒫 𝐴(𝐹𝑣):𝑣1-1-onto→ran 𝐹 ↔ ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto→ran 𝐹)
203197, 202sylib 218 1 (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹𝑥):𝑥1-1-onto→ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  ∃!wreu 3362  Vcvv 3464  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   class class class wbr 5124  cmpt 5206   Or wor 5565   We wwe 5610  ccnv 5658  dom cdm 5659  ran crn 5660  cres 5661  cima 5662   Fn wfn 6531  wf 6532  1-1wf1 6533  ontowfo 6534  1-1-ontowf1o 6535  cfv 6536  crio 7366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367
This theorem is referenced by:  wessf1orn  45190
  Copyright terms: Public domain W3C validator