MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem27 Structured version   Visualization version   GIF version

Theorem fin23lem27 10219
Description: The mapping constructed in fin23lem22 10218 is in fact an isomorphism. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem22.b 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
Assertion
Ref Expression
fin23lem27 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶 Isom E , E (ω, 𝑆))
Distinct variable group:   𝑖,𝑗,𝑆
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem fin23lem27
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 7806 . . . 4 Ord ω
2 ordwe 6319 . . . 4 (Ord ω → E We ω)
3 weso 5605 . . . 4 ( E We ω → E Or ω)
41, 2, 3mp2b 10 . . 3 E Or ω
54a1i 11 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → E Or ω)
6 sopo 5541 . . . . 5 ( E Or ω → E Po ω)
74, 6ax-mp 5 . . . 4 E Po ω
8 poss 5524 . . . 4 (𝑆 ⊆ ω → ( E Po ω → E Po 𝑆))
97, 8mpi 20 . . 3 (𝑆 ⊆ ω → E Po 𝑆)
109adantr 480 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → E Po 𝑆)
11 fin23lem22.b . . . 4 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
1211fin23lem22 10218 . . 3 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
13 f1ofo 6770 . . 3 (𝐶:ω–1-1-onto𝑆𝐶:ω–onto𝑆)
1412, 13syl 17 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–onto𝑆)
15 nnsdomel 9883 . . . . . . . 8 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (𝑎𝑏𝑎𝑏))
1615adantl 481 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏𝑎𝑏))
1716biimpd 229 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏𝑎𝑏))
18 fin23lem23 10217 . . . . . . . . . . . . 13 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑎)
1918adantrr 717 . . . . . . . . . . . 12 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑎)
20 ineq1 4160 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → (𝑗𝑆) = (𝑖𝑆))
2120breq1d 5099 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → ((𝑗𝑆) ≈ 𝑎 ↔ (𝑖𝑆) ≈ 𝑎))
2221cbvreuvw 3368 . . . . . . . . . . . 12 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑎 ↔ ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑎)
2319, 22sylib 218 . . . . . . . . . . 11 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑎)
24 nfv 1915 . . . . . . . . . . . 12 𝑖((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎
2521cbvriotavw 7313 . . . . . . . . . . . 12 (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) = (𝑖𝑆 (𝑖𝑆) ≈ 𝑎)
26 ineq1 4160 . . . . . . . . . . . . 13 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) → (𝑖𝑆) = ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆))
2726breq1d 5099 . . . . . . . . . . . 12 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) → ((𝑖𝑆) ≈ 𝑎 ↔ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎))
2824, 25, 27riotaprop 7330 . . . . . . . . . . 11 (∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑎 → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎))
2923, 28syl 17 . . . . . . . . . 10 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎))
3029simprd 495 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎)
3130adantrr 717 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎)
32 simprr 772 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → 𝑎𝑏)
33 fin23lem23 10217 . . . . . . . . . . . . . . 15 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑏 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑏)
3433adantrl 716 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑏)
3520breq1d 5099 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → ((𝑗𝑆) ≈ 𝑏 ↔ (𝑖𝑆) ≈ 𝑏))
3635cbvreuvw 3368 . . . . . . . . . . . . . 14 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑏 ↔ ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑏)
3734, 36sylib 218 . . . . . . . . . . . . 13 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑏)
38 nfv 1915 . . . . . . . . . . . . . 14 𝑖((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏
3935cbvriotavw 7313 . . . . . . . . . . . . . 14 (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) = (𝑖𝑆 (𝑖𝑆) ≈ 𝑏)
40 ineq1 4160 . . . . . . . . . . . . . . 15 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) → (𝑖𝑆) = ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
4140breq1d 5099 . . . . . . . . . . . . . 14 (𝑖 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) → ((𝑖𝑆) ≈ 𝑏 ↔ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏))
4238, 39, 41riotaprop 7330 . . . . . . . . . . . . 13 (∃!𝑖𝑆 (𝑖𝑆) ≈ 𝑏 → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏))
4337, 42syl 17 . . . . . . . . . . . 12 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆 ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏))
4443simprd 495 . . . . . . . . . . 11 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) ≈ 𝑏)
4544ensymd 8927 . . . . . . . . . 10 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑏 ≈ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
4645adantrr 717 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → 𝑏 ≈ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
47 sdomentr 9024 . . . . . . . . 9 ((𝑎𝑏𝑏 ≈ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)) → 𝑎 ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
4832, 46, 47syl2anc 584 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → 𝑎 ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
49 ensdomtr 9026 . . . . . . . 8 ((((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≈ 𝑎𝑎 ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
5031, 48, 49syl2anc 584 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ 𝑎𝑏)) → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆))
5150expr 456 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏 → ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)))
52 simpll 766 . . . . . . . . 9 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑆 ⊆ ω)
53 omsson 7800 . . . . . . . . 9 ω ⊆ On
5452, 53sstrdi 3942 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑆 ⊆ On)
5529simpld 494 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ 𝑆)
5654, 55sseldd 3930 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ On)
5743simpld 494 . . . . . . . 8 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ 𝑆)
5854, 57sseldd 3930 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ On)
59 onsdominel 9039 . . . . . . . 8 (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ On ∧ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ On ∧ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆)) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
60593expia 1121 . . . . . . 7 (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ On ∧ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∈ On) → (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
6156, 58, 60syl2anc 584 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (((𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∩ 𝑆) ≺ ((𝑗𝑆 (𝑗𝑆) ≈ 𝑏) ∩ 𝑆) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
6217, 51, 613syld 60 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
63 breq2 5093 . . . . . . . 8 (𝑖 = 𝑎 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑗𝑆) ≈ 𝑎))
6463riotabidv 7305 . . . . . . 7 (𝑖 = 𝑎 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎))
65 simprl 770 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑎 ∈ ω)
6611, 64, 65, 55fvmptd3 6952 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝐶𝑎) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑎))
67 breq2 5093 . . . . . . . 8 (𝑖 = 𝑏 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑗𝑆) ≈ 𝑏))
6867riotabidv 7305 . . . . . . 7 (𝑖 = 𝑏 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
69 simprr 772 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → 𝑏 ∈ ω)
7011, 68, 69, 57fvmptd3 6952 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝐶𝑏) = (𝑗𝑆 (𝑗𝑆) ≈ 𝑏))
7166, 70eleq12d 2825 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝐶𝑎) ∈ (𝐶𝑏) ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑎) ∈ (𝑗𝑆 (𝑗𝑆) ≈ 𝑏)))
7262, 71sylibrd 259 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎𝑏 → (𝐶𝑎) ∈ (𝐶𝑏)))
73 epel 5517 . . . 4 (𝑎 E 𝑏𝑎𝑏)
74 fvex 6835 . . . . 5 (𝐶𝑏) ∈ V
7574epeli 5516 . . . 4 ((𝐶𝑎) E (𝐶𝑏) ↔ (𝐶𝑎) ∈ (𝐶𝑏))
7672, 73, 753imtr4g 296 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → (𝑎 E 𝑏 → (𝐶𝑎) E (𝐶𝑏)))
7776ralrimivva 3175 . 2 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → ∀𝑎 ∈ ω ∀𝑏 ∈ ω (𝑎 E 𝑏 → (𝐶𝑎) E (𝐶𝑏)))
78 soisoi 7262 . 2 ((( E Or ω ∧ E Po 𝑆) ∧ (𝐶:ω–onto𝑆 ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω (𝑎 E 𝑏 → (𝐶𝑎) E (𝐶𝑏)))) → 𝐶 Isom E , E (ω, 𝑆))
795, 10, 14, 77, 78syl22anc 838 1 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶 Isom E , E (ω, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  cin 3896  wss 3897   class class class wbr 5089  cmpt 5170   E cep 5513   Po wpo 5520   Or wor 5521   We wwe 5566  Ord word 6305  Oncon0 6306  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482  crio 7302  ωcom 7796  cen 8866  csdm 8868  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator