Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clcnvlem Structured version   Visualization version   GIF version

Theorem clcnvlem 43613
Description: When 𝐴, an upper bound of the closure, exists and certain substitutions hold the converse of the closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.)
Hypotheses
Ref Expression
clcnvlem.sub1 ((𝜑𝑥 = (𝑦 ∪ (𝑋𝑋))) → (𝜒𝜓))
clcnvlem.sub2 ((𝜑𝑦 = 𝑥) → (𝜓𝜒))
clcnvlem.sub3 (𝑥 = 𝐴 → (𝜓𝜃))
clcnvlem.ssub (𝜑𝑋𝐴)
clcnvlem.ubex (𝜑𝐴 ∈ V)
clcnvlem.clex (𝜑𝜃)
Assertion
Ref Expression
clcnvlem (𝜑 {𝑥 ∣ (𝑋𝑥𝜓)} = {𝑦 ∣ (𝑋𝑦𝜒)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝑋   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝐴(𝑦)

Proof of Theorem clcnvlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 clcnvlem.ubex . . . 4 (𝜑𝐴 ∈ V)
2 clcnvlem.ssub . . . . 5 (𝜑𝑋𝐴)
3 clcnvlem.clex . . . . 5 (𝜑𝜃)
42, 3jca 511 . . . 4 (𝜑 → (𝑋𝐴𝜃))
5 clcnvlem.sub3 . . . . 5 (𝑥 = 𝐴 → (𝜓𝜃))
65cleq2lem 43598 . . . 4 (𝑥 = 𝐴 → ((𝑋𝑥𝜓) ↔ (𝑋𝐴𝜃)))
71, 4, 6spcedv 3598 . . 3 (𝜑 → ∃𝑥(𝑋𝑥𝜓))
87cnvintabd 43593 . 2 (𝜑 {𝑥 ∣ (𝑋𝑥𝜓)} = {𝑧 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))})
9 df-rab 3434 . . . . 5 {𝑧 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))} = {𝑧 ∣ (𝑧 ∈ 𝒫 (V × V) ∧ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)))}
10 exsimpl 1866 . . . . . . . . . . 11 (∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)) → ∃𝑥 𝑧 = 𝑥)
11 relcnv 6125 . . . . . . . . . . . . 13 Rel 𝑥
12 releq 5789 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (Rel 𝑧 ↔ Rel 𝑥))
1311, 12mpbiri 258 . . . . . . . . . . . 12 (𝑧 = 𝑥 → Rel 𝑧)
1413exlimiv 1928 . . . . . . . . . . 11 (∃𝑥 𝑧 = 𝑥 → Rel 𝑧)
1510, 14syl 17 . . . . . . . . . 10 (∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)) → Rel 𝑧)
16 df-rel 5696 . . . . . . . . . 10 (Rel 𝑧𝑧 ⊆ (V × V))
1715, 16sylib 218 . . . . . . . . 9 (∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)) → 𝑧 ⊆ (V × V))
18 velpw 4610 . . . . . . . . . 10 (𝑧 ∈ 𝒫 (V × V) ↔ 𝑧 ⊆ (V × V))
1918bicomi 224 . . . . . . . . 9 (𝑧 ⊆ (V × V) ↔ 𝑧 ∈ 𝒫 (V × V))
2017, 19sylib 218 . . . . . . . 8 (∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)) → 𝑧 ∈ 𝒫 (V × V))
2120pm4.71ri 560 . . . . . . 7 (∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)) ↔ (𝑧 ∈ 𝒫 (V × V) ∧ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))))
2221bicomi 224 . . . . . 6 ((𝑧 ∈ 𝒫 (V × V) ∧ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))) ↔ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)))
2322abbii 2807 . . . . 5 {𝑧 ∣ (𝑧 ∈ 𝒫 (V × V) ∧ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)))} = {𝑧 ∣ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))}
249, 23eqtri 2763 . . . 4 {𝑧 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))} = {𝑧 ∣ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))}
2524inteqi 4955 . . 3 {𝑧 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))} = {𝑧 ∣ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))}
2625a1i 11 . 2 (𝜑 {𝑧 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))} = {𝑧 ∣ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))})
27 vex 3482 . . . . . . 7 𝑦 ∈ V
2827cnvex 7948 . . . . . 6 𝑦 ∈ V
2928cnvex 7948 . . . . 5 𝑦 ∈ V
3029a1i 11 . . . 4 (𝜑𝑦 ∈ V)
311, 2ssexd 5330 . . . . . . . . . . 11 (𝜑𝑋 ∈ V)
3231difexd 5337 . . . . . . . . . 10 (𝜑 → (𝑋𝑋) ∈ V)
33 unexg 7762 . . . . . . . . . 10 ((𝑦 ∈ V ∧ (𝑋𝑋) ∈ V) → (𝑦 ∪ (𝑋𝑋)) ∈ V)
3428, 32, 33sylancr 587 . . . . . . . . 9 (𝜑 → (𝑦 ∪ (𝑋𝑋)) ∈ V)
35 inundif 4485 . . . . . . . . . . . . . 14 ((𝑋𝑋) ∪ (𝑋𝑋)) = 𝑋
36 cnvun 6165 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝑋) ∪ (𝑋𝑋)) = ((𝑋𝑋) ∪ (𝑋𝑋))
3736sseq1i 4024 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ 𝑦 ↔ ((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ 𝑦)
3837biimpi 216 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ 𝑦 → ((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ 𝑦)
3938unssad 4203 . . . . . . . . . . . . . . . . . 18 (((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ 𝑦(𝑋𝑋) ⊆ 𝑦)
40 relcnv 6125 . . . . . . . . . . . . . . . . . . . . 21 Rel 𝑋
41 relin2 5826 . . . . . . . . . . . . . . . . . . . . 21 (Rel 𝑋 → Rel (𝑋𝑋))
4240, 41ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 Rel (𝑋𝑋)
43 dfrel2 6211 . . . . . . . . . . . . . . . . . . . 20 (Rel (𝑋𝑋) ↔ (𝑋𝑋) = (𝑋𝑋))
4442, 43mpbi 230 . . . . . . . . . . . . . . . . . . 19 (𝑋𝑋) = (𝑋𝑋)
45 cnvss 5886 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝑋) ⊆ 𝑦(𝑋𝑋) ⊆ 𝑦)
4644, 45eqsstrrid 4045 . . . . . . . . . . . . . . . . . 18 ((𝑋𝑋) ⊆ 𝑦 → (𝑋𝑋) ⊆ 𝑦)
4739, 46syl 17 . . . . . . . . . . . . . . . . 17 (((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ 𝑦 → (𝑋𝑋) ⊆ 𝑦)
48 ssid 4018 . . . . . . . . . . . . . . . . 17 (𝑋𝑋) ⊆ (𝑋𝑋)
49 unss12 4198 . . . . . . . . . . . . . . . . 17 (((𝑋𝑋) ⊆ 𝑦 ∧ (𝑋𝑋) ⊆ (𝑋𝑋)) → ((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ (𝑦 ∪ (𝑋𝑋)))
5047, 48, 49sylancl 586 . . . . . . . . . . . . . . . 16 (((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ 𝑦 → ((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ (𝑦 ∪ (𝑋𝑋)))
5150a1i 11 . . . . . . . . . . . . . . 15 (((𝑋𝑋) ∪ (𝑋𝑋)) = 𝑋 → (((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ 𝑦 → ((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ (𝑦 ∪ (𝑋𝑋))))
52 cnveq 5887 . . . . . . . . . . . . . . . 16 (((𝑋𝑋) ∪ (𝑋𝑋)) = 𝑋((𝑋𝑋) ∪ (𝑋𝑋)) = 𝑋)
5352sseq1d 4027 . . . . . . . . . . . . . . 15 (((𝑋𝑋) ∪ (𝑋𝑋)) = 𝑋 → (((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ 𝑦𝑋𝑦))
54 sseq1 4021 . . . . . . . . . . . . . . 15 (((𝑋𝑋) ∪ (𝑋𝑋)) = 𝑋 → (((𝑋𝑋) ∪ (𝑋𝑋)) ⊆ (𝑦 ∪ (𝑋𝑋)) ↔ 𝑋 ⊆ (𝑦 ∪ (𝑋𝑋))))
5551, 53, 543imtr3d 293 . . . . . . . . . . . . . 14 (((𝑋𝑋) ∪ (𝑋𝑋)) = 𝑋 → (𝑋𝑦𝑋 ⊆ (𝑦 ∪ (𝑋𝑋))))
5635, 55ax-mp 5 . . . . . . . . . . . . 13 (𝑋𝑦𝑋 ⊆ (𝑦 ∪ (𝑋𝑋)))
57 sseq2 4022 . . . . . . . . . . . . 13 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → (𝑋𝑥𝑋 ⊆ (𝑦 ∪ (𝑋𝑋))))
5856, 57imbitrrid 246 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → (𝑋𝑦𝑋𝑥))
5958adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 = (𝑦 ∪ (𝑋𝑋))) → (𝑋𝑦𝑋𝑥))
60 clcnvlem.sub1 . . . . . . . . . . 11 ((𝜑𝑥 = (𝑦 ∪ (𝑋𝑋))) → (𝜒𝜓))
6159, 60anim12d 609 . . . . . . . . . 10 ((𝜑𝑥 = (𝑦 ∪ (𝑋𝑋))) → ((𝑋𝑦𝜒) → (𝑋𝑥𝜓)))
62 cnvun 6165 . . . . . . . . . . . . 13 (𝑦 ∪ (𝑋𝑋)) = (𝑦(𝑋𝑋))
63 cnvnonrel 43578 . . . . . . . . . . . . . . 15 (𝑋𝑋) = ∅
64 0ss 4406 . . . . . . . . . . . . . . 15 ∅ ⊆ 𝑦
6563, 64eqsstri 4030 . . . . . . . . . . . . . 14 (𝑋𝑋) ⊆ 𝑦
66 ssequn2 4199 . . . . . . . . . . . . . 14 ((𝑋𝑋) ⊆ 𝑦 ↔ (𝑦(𝑋𝑋)) = 𝑦)
6765, 66mpbi 230 . . . . . . . . . . . . 13 (𝑦(𝑋𝑋)) = 𝑦
6862, 67eqtr2i 2764 . . . . . . . . . . . 12 𝑦 = (𝑦 ∪ (𝑋𝑋))
69 cnveq 5887 . . . . . . . . . . . 12 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → 𝑥 = (𝑦 ∪ (𝑋𝑋)))
7068, 69eqtr4id 2794 . . . . . . . . . . 11 (𝑥 = (𝑦 ∪ (𝑋𝑋)) → 𝑦 = 𝑥)
7170adantl 481 . . . . . . . . . 10 ((𝜑𝑥 = (𝑦 ∪ (𝑋𝑋))) → 𝑦 = 𝑥)
7261, 71jctild 525 . . . . . . . . 9 ((𝜑𝑥 = (𝑦 ∪ (𝑋𝑋))) → ((𝑋𝑦𝜒) → (𝑦 = 𝑥 ∧ (𝑋𝑥𝜓))))
7334, 72spcimedv 3595 . . . . . . . 8 (𝜑 → ((𝑋𝑦𝜒) → ∃𝑥(𝑦 = 𝑥 ∧ (𝑋𝑥𝜓))))
7473imp 406 . . . . . . 7 ((𝜑 ∧ (𝑋𝑦𝜒)) → ∃𝑥(𝑦 = 𝑥 ∧ (𝑋𝑥𝜓)))
7574adantlr 715 . . . . . 6 (((𝜑𝑧 = 𝑦) ∧ (𝑋𝑦𝜒)) → ∃𝑥(𝑦 = 𝑥 ∧ (𝑋𝑥𝜓)))
76 eqeq1 2739 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 = 𝑥𝑦 = 𝑥))
7776anbi1d 631 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)) ↔ (𝑦 = 𝑥 ∧ (𝑋𝑥𝜓))))
7877exbidv 1919 . . . . . . 7 (𝑧 = 𝑦 → (∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)) ↔ ∃𝑥(𝑦 = 𝑥 ∧ (𝑋𝑥𝜓))))
7978ad2antlr 727 . . . . . 6 (((𝜑𝑧 = 𝑦) ∧ (𝑋𝑦𝜒)) → (∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)) ↔ ∃𝑥(𝑦 = 𝑥 ∧ (𝑋𝑥𝜓))))
8075, 79mpbird 257 . . . . 5 (((𝜑𝑧 = 𝑦) ∧ (𝑋𝑦𝜒)) → ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)))
8180ex 412 . . . 4 ((𝜑𝑧 = 𝑦) → ((𝑋𝑦𝜒) → ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))))
82 cnvcnvss 6216 . . . . 5 𝑦𝑦
8382a1i 11 . . . 4 (𝜑𝑦𝑦)
8430, 81, 83intabssd 43509 . . 3 (𝜑 {𝑧 ∣ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))} ⊆ {𝑦 ∣ (𝑋𝑦𝜒)})
85 vex 3482 . . . . 5 𝑧 ∈ V
8685a1i 11 . . . 4 (𝜑𝑧 ∈ V)
87 eqtr 2758 . . . . . . . 8 ((𝑦 = 𝑧𝑧 = 𝑥) → 𝑦 = 𝑥)
88 cnvss 5886 . . . . . . . . . . . 12 (𝑋𝑥𝑋𝑥)
89 sseq2 4022 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑋𝑦𝑋𝑥))
9088, 89imbitrrid 246 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑋𝑥𝑋𝑦))
9190adantl 481 . . . . . . . . . 10 ((𝜑𝑦 = 𝑥) → (𝑋𝑥𝑋𝑦))
92 clcnvlem.sub2 . . . . . . . . . 10 ((𝜑𝑦 = 𝑥) → (𝜓𝜒))
9391, 92anim12d 609 . . . . . . . . 9 ((𝜑𝑦 = 𝑥) → ((𝑋𝑥𝜓) → (𝑋𝑦𝜒)))
9493ex 412 . . . . . . . 8 (𝜑 → (𝑦 = 𝑥 → ((𝑋𝑥𝜓) → (𝑋𝑦𝜒))))
9587, 94syl5 34 . . . . . . 7 (𝜑 → ((𝑦 = 𝑧𝑧 = 𝑥) → ((𝑋𝑥𝜓) → (𝑋𝑦𝜒))))
9695impl 455 . . . . . 6 (((𝜑𝑦 = 𝑧) ∧ 𝑧 = 𝑥) → ((𝑋𝑥𝜓) → (𝑋𝑦𝜒)))
9796expimpd 453 . . . . 5 ((𝜑𝑦 = 𝑧) → ((𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)) → (𝑋𝑦𝜒)))
9897exlimdv 1931 . . . 4 ((𝜑𝑦 = 𝑧) → (∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓)) → (𝑋𝑦𝜒)))
99 ssid 4018 . . . . 5 𝑧𝑧
10099a1i 11 . . . 4 (𝜑𝑧𝑧)
10186, 98, 100intabssd 43509 . . 3 (𝜑 {𝑦 ∣ (𝑋𝑦𝜒)} ⊆ {𝑧 ∣ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))})
10284, 101eqssd 4013 . 2 (𝜑 {𝑧 ∣ ∃𝑥(𝑧 = 𝑥 ∧ (𝑋𝑥𝜓))} = {𝑦 ∣ (𝑋𝑦𝜒)})
1038, 26, 1023eqtrd 2779 1 (𝜑 {𝑥 ∣ (𝑋𝑥𝜓)} = {𝑦 ∣ (𝑋𝑦𝜒)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  {cab 2712  {crab 3433  Vcvv 3478  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605   cint 4951   × cxp 5687  ccnv 5688  Rel wrel 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-1st 8013  df-2nd 8014
This theorem is referenced by:  cnvtrucl0  43614  cnvrcl0  43615  cnvtrcl0  43616
  Copyright terms: Public domain W3C validator