Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtrclexi Structured version   Visualization version   GIF version

Theorem rtrclexi 39961
 Description: The reflexive-transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.)
Hypothesis
Ref Expression
rtrclexi.1 𝐴𝑉
Assertion
Ref Expression
rtrclexi {𝑥 ∣ (𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem rtrclexi
StepHypRef Expression
1 ssun1 4146 . 2 𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
2 coundir 6094 . . . . 5 ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = ((𝐴 ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ∪ (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))
3 coundi 6093 . . . . . . 7 (𝐴 ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = ((𝐴𝐴) ∪ (𝐴 ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))
4 cossxp 6116 . . . . . . . . 9 (𝐴𝐴) ⊆ (dom 𝐴 × ran 𝐴)
5 ssun1 4146 . . . . . . . . . 10 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 ssun2 4147 . . . . . . . . . 10 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
7 xpss12 5563 . . . . . . . . . 10 ((dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ∧ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)) → (dom 𝐴 × ran 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
85, 6, 7mp2an 690 . . . . . . . . 9 (dom 𝐴 × ran 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
94, 8sstri 3974 . . . . . . . 8 (𝐴𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
10 cossxp 6116 . . . . . . . . 9 (𝐴 ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ (dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) × ran 𝐴)
11 dmxpss 6021 . . . . . . . . . 10 dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (dom 𝐴 ∪ ran 𝐴)
12 xpss12 5563 . . . . . . . . . 10 ((dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (dom 𝐴 ∪ ran 𝐴) ∧ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)) → (dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) × ran 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
1311, 6, 12mp2an 690 . . . . . . . . 9 (dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) × ran 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
1410, 13sstri 3974 . . . . . . . 8 (𝐴 ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
159, 14unssi 4159 . . . . . . 7 ((𝐴𝐴) ∪ (𝐴 ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
163, 15eqsstri 3999 . . . . . 6 (𝐴 ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
17 coundi 6093 . . . . . . 7 (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) = ((((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ 𝐴) ∪ (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))
18 cossxp 6116 . . . . . . . . 9 (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ 𝐴) ⊆ (dom 𝐴 × ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
19 rnxpss 6022 . . . . . . . . . 10 ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (dom 𝐴 ∪ ran 𝐴)
20 xpss12 5563 . . . . . . . . . 10 ((dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ∧ ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (dom 𝐴 ∪ ran 𝐴)) → (dom 𝐴 × ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
215, 19, 20mp2an 690 . . . . . . . . 9 (dom 𝐴 × ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
2218, 21sstri 3974 . . . . . . . 8 (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ 𝐴) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
23 xpidtr 5975 . . . . . . . 8 (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
2422, 23unssi 4159 . . . . . . 7 ((((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ 𝐴) ∪ (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
2517, 24eqsstri 3999 . . . . . 6 (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
2616, 25unssi 4159 . . . . 5 ((𝐴 ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ∪ (((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
272, 26eqsstri 3999 . . . 4 ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
28 ssun2 4147 . . . 4 ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
2927, 28sstri 3974 . . 3 ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
30 dmun 5772 . . . . . . . 8 dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
315, 11unssi 4159 . . . . . . . 8 (dom 𝐴 ∪ dom ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ (dom 𝐴 ∪ ran 𝐴)
3230, 31eqsstri 3999 . . . . . . 7 dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ (dom 𝐴 ∪ ran 𝐴)
33 rnun 5997 . . . . . . . 8 ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
346, 19unssi 4159 . . . . . . . 8 (ran 𝐴 ∪ ran ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ (dom 𝐴 ∪ ran 𝐴)
3533, 34eqsstri 3999 . . . . . . 7 ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ⊆ (dom 𝐴 ∪ ran 𝐴)
3632, 35unssi 4159 . . . . . 6 (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (dom 𝐴 ∪ ran 𝐴)
37 ssres2 5874 . . . . . 6 ((dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (dom 𝐴 ∪ ran 𝐴) → ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
3836, 37ax-mp 5 . . . . 5 ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ ( I ↾ (dom 𝐴 ∪ ran 𝐴))
39 idssxp 5909 . . . . 5 ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
4038, 39sstri 3974 . . . 4 ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))
4140, 28sstri 3974 . . 3 ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))
42 id 22 . . 3 ((((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) → (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))
4329, 41, 42mp2an 690 . 2 (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))
44 rtrclexi.1 . . . . . 6 𝐴𝑉
4544elexi 3512 . . . . 5 𝐴 ∈ V
4645dmex 7608 . . . . . . 7 dom 𝐴 ∈ V
4745rnex 7609 . . . . . . 7 ran 𝐴 ∈ V
4846, 47unex 7461 . . . . . 6 (dom 𝐴 ∪ ran 𝐴) ∈ V
4948, 48xpex 7468 . . . . 5 ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)) ∈ V
5045, 49unex 7461 . . . 4 (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∈ V
51 id 22 . . . . . . . 8 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → 𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))
5251, 51coeq12d 5728 . . . . . . 7 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → (𝑥𝑥) = ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))
5352, 51sseq12d 3998 . . . . . 6 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ((𝑥𝑥) ⊆ 𝑥 ↔ ((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))
54 dmeq 5765 . . . . . . . . 9 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → dom 𝑥 = dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))
55 rneq 5799 . . . . . . . . 9 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ran 𝑥 = ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))
5654, 55uneq12d 4138 . . . . . . . 8 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))
5756reseq2d 5846 . . . . . . 7 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))))
5857, 51sseq12d 3998 . . . . . 6 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))
5953, 58anbi12d 632 . . . . 5 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → (((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))))
6059cleq2lem 39948 . . . 4 (𝑥 = (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) → ((𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) ↔ (𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))))))
6150, 60spcev 3605 . . 3 ((𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) → ∃𝑥(𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)))
62 intexab 5233 . . 3 (∃𝑥(𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) ↔ {𝑥 ∣ (𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V)
6361, 62sylib 220 . 2 ((𝐴 ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ (((𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∘ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴)))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ((dom 𝐴 ∪ ran 𝐴) × (dom 𝐴 ∪ ran 𝐴))))) → {𝑥 ∣ (𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V)
641, 43, 63mp2an 690 1 {𝑥 ∣ (𝐴𝑥 ∧ ((𝑥𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 398   = wceq 1530  ∃wex 1773   ∈ wcel 2107  {cab 2797  Vcvv 3493   ∪ cun 3932   ⊆ wss 3934  ∩ cint 4867   I cid 5452   × cxp 5546  dom cdm 5548  ran crn 5549   ↾ cres 5550   ∘ ccom 5552 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-int 4868  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560 This theorem is referenced by:  dfrtrcl5  39969
 Copyright terms: Public domain W3C validator