Proof of Theorem rclexi
| Step | Hyp | Ref
| Expression |
| 1 | | ssun1 4158 |
. 2
⊢ 𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
| 2 | | dmun 5895 |
. . . . . . 7
⊢ dom
(𝐴 ∪ ( I ↾ (dom
𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ dom ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
| 3 | | dmresi 6044 |
. . . . . . . 8
⊢ dom ( I
↾ (dom 𝐴 ∪ ran
𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
| 4 | 3 | uneq2i 4145 |
. . . . . . 7
⊢ (dom
𝐴 ∪ dom ( I ↾
(dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) |
| 5 | | ssun1 4158 |
. . . . . . . 8
⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) |
| 6 | | ssequn1 4166 |
. . . . . . . 8
⊢ (dom
𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)) |
| 7 | 5, 6 | mpbi 230 |
. . . . . . 7
⊢ (dom
𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
| 8 | 2, 4, 7 | 3eqtri 2763 |
. . . . . 6
⊢ dom
(𝐴 ∪ ( I ↾ (dom
𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴) |
| 9 | | rnun 6139 |
. . . . . . 7
⊢ ran
(𝐴 ∪ ( I ↾ (dom
𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ ran ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
| 10 | | rnresi 6067 |
. . . . . . . 8
⊢ ran ( I
↾ (dom 𝐴 ∪ ran
𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
| 11 | 10 | uneq2i 4145 |
. . . . . . 7
⊢ (ran
𝐴 ∪ ran ( I ↾
(dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) |
| 12 | | ssun2 4159 |
. . . . . . . 8
⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) |
| 13 | | ssequn1 4166 |
. . . . . . . 8
⊢ (ran
𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)) |
| 14 | 12, 13 | mpbi 230 |
. . . . . . 7
⊢ (ran
𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
| 15 | 9, 11, 14 | 3eqtri 2763 |
. . . . . 6
⊢ ran
(𝐴 ∪ ( I ↾ (dom
𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴) |
| 16 | 8, 15 | uneq12i 4146 |
. . . . 5
⊢ (dom
(𝐴 ∪ ( I ↾ (dom
𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) = ((dom 𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴)) |
| 17 | | unidm 4137 |
. . . . 5
⊢ ((dom
𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
| 18 | 16, 17 | eqtri 2759 |
. . . 4
⊢ (dom
(𝐴 ∪ ( I ↾ (dom
𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) = (dom 𝐴 ∪ ran 𝐴) |
| 19 | 18 | reseq2i 5968 |
. . 3
⊢ ( I
↾ (dom (𝐴 ∪ ( I
↾ (dom 𝐴 ∪ ran
𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)) |
| 20 | | ssun2 4159 |
. . 3
⊢ ( I
↾ (dom 𝐴 ∪ ran
𝐴)) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
| 21 | 19, 20 | eqsstri 4010 |
. 2
⊢ ( I
↾ (dom (𝐴 ∪ ( I
↾ (dom 𝐴 ∪ ran
𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
| 22 | | rclexi.1 |
. . . . . 6
⊢ 𝐴 ∈ 𝑉 |
| 23 | 22 | elexi 3487 |
. . . . 5
⊢ 𝐴 ∈ V |
| 24 | | dmexg 7902 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| 25 | | rnexg 7903 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| 26 | 24, 25 | unexd 7753 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (dom 𝐴 ∪ ran 𝐴) ∈ V) |
| 27 | 26 | resiexd 7213 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ∈ V) |
| 28 | 22, 27 | ax-mp 5 |
. . . . 5
⊢ ( I
↾ (dom 𝐴 ∪ ran
𝐴)) ∈
V |
| 29 | 23, 28 | unex 7743 |
. . . 4
⊢ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∈ V |
| 30 | | dmeq 5888 |
. . . . . . . 8
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → dom 𝑥 = dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) |
| 31 | | rneq 5921 |
. . . . . . . 8
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ran 𝑥 = ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) |
| 32 | 30, 31 | uneq12d 4149 |
. . . . . . 7
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) |
| 33 | 32 | reseq2d 5971 |
. . . . . 6
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))))) |
| 34 | | id 22 |
. . . . . 6
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → 𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) |
| 35 | 33, 34 | sseq12d 3997 |
. . . . 5
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) |
| 36 | 35 | cleq2lem 43599 |
. . . 4
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ((𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ (𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))))) |
| 37 | 29, 36 | spcev 3590 |
. . 3
⊢ ((𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) |
| 38 | | intexab 5321 |
. . 3
⊢
(∃𝑥(𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V) |
| 39 | 37, 38 | sylib 218 |
. 2
⊢ ((𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) → ∩
{𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V) |
| 40 | 1, 21, 39 | mp2an 692 |
1
⊢ ∩ {𝑥
∣ (𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V |