Proof of Theorem rclexi
Step | Hyp | Ref
| Expression |
1 | | ssun1 4102 |
. 2
⊢ 𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
2 | | dmun 5808 |
. . . . . . 7
⊢ dom
(𝐴 ∪ ( I ↾ (dom
𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ dom ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
3 | | dmresi 5950 |
. . . . . . . 8
⊢ dom ( I
↾ (dom 𝐴 ∪ ran
𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
4 | 3 | uneq2i 4090 |
. . . . . . 7
⊢ (dom
𝐴 ∪ dom ( I ↾
(dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) |
5 | | ssun1 4102 |
. . . . . . . 8
⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) |
6 | | ssequn1 4110 |
. . . . . . . 8
⊢ (dom
𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)) |
7 | 5, 6 | mpbi 229 |
. . . . . . 7
⊢ (dom
𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
8 | 2, 4, 7 | 3eqtri 2770 |
. . . . . 6
⊢ dom
(𝐴 ∪ ( I ↾ (dom
𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴) |
9 | | rnun 6038 |
. . . . . . 7
⊢ ran
(𝐴 ∪ ( I ↾ (dom
𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ ran ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
10 | | rnresi 5972 |
. . . . . . . 8
⊢ ran ( I
↾ (dom 𝐴 ∪ ran
𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
11 | 10 | uneq2i 4090 |
. . . . . . 7
⊢ (ran
𝐴 ∪ ran ( I ↾
(dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) |
12 | | ssun2 4103 |
. . . . . . . 8
⊢ ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) |
13 | | ssequn1 4110 |
. . . . . . . 8
⊢ (ran
𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)) |
14 | 12, 13 | mpbi 229 |
. . . . . . 7
⊢ (ran
𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
15 | 9, 11, 14 | 3eqtri 2770 |
. . . . . 6
⊢ ran
(𝐴 ∪ ( I ↾ (dom
𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴) |
16 | 8, 15 | uneq12i 4091 |
. . . . 5
⊢ (dom
(𝐴 ∪ ( I ↾ (dom
𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) = ((dom 𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴)) |
17 | | unidm 4082 |
. . . . 5
⊢ ((dom
𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴) |
18 | 16, 17 | eqtri 2766 |
. . . 4
⊢ (dom
(𝐴 ∪ ( I ↾ (dom
𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) = (dom 𝐴 ∪ ran 𝐴) |
19 | 18 | reseq2i 5877 |
. . 3
⊢ ( I
↾ (dom (𝐴 ∪ ( I
↾ (dom 𝐴 ∪ ran
𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)) |
20 | | ssun2 4103 |
. . 3
⊢ ( I
↾ (dom 𝐴 ∪ ran
𝐴)) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
21 | 19, 20 | eqsstri 3951 |
. 2
⊢ ( I
↾ (dom (𝐴 ∪ ( I
↾ (dom 𝐴 ∪ ran
𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) |
22 | | rclexi.1 |
. . . . . 6
⊢ 𝐴 ∈ 𝑉 |
23 | 22 | elexi 3441 |
. . . . 5
⊢ 𝐴 ∈ V |
24 | | dmexg 7724 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
25 | | rnexg 7725 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
26 | | unexg 7577 |
. . . . . . . 8
⊢ ((dom
𝐴 ∈ V ∧ ran 𝐴 ∈ V) → (dom 𝐴 ∪ ran 𝐴) ∈ V) |
27 | 24, 25, 26 | syl2anc 583 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (dom 𝐴 ∪ ran 𝐴) ∈ V) |
28 | 27 | resiexd 7074 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ∈ V) |
29 | 22, 28 | ax-mp 5 |
. . . . 5
⊢ ( I
↾ (dom 𝐴 ∪ ran
𝐴)) ∈
V |
30 | 23, 29 | unex 7574 |
. . . 4
⊢ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∈ V |
31 | | dmeq 5801 |
. . . . . . . 8
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → dom 𝑥 = dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) |
32 | | rneq 5834 |
. . . . . . . 8
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ran 𝑥 = ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) |
33 | 31, 32 | uneq12d 4094 |
. . . . . . 7
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) |
34 | 33 | reseq2d 5880 |
. . . . . 6
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))))) |
35 | | id 22 |
. . . . . 6
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → 𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) |
36 | 34, 35 | sseq12d 3950 |
. . . . 5
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) |
37 | 36 | cleq2lem 41105 |
. . . 4
⊢ (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ((𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ (𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))))) |
38 | 30, 37 | spcev 3535 |
. . 3
⊢ ((𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) → ∃𝑥(𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)) |
39 | | intexab 5258 |
. . 3
⊢
(∃𝑥(𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V) |
40 | 38, 39 | sylib 217 |
. 2
⊢ ((𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) → ∩
{𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V) |
41 | 1, 21, 40 | mp2an 688 |
1
⊢ ∩ {𝑥
∣ (𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V |