Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rclexi Structured version   Visualization version   GIF version

Theorem rclexi 43654
Description: The reflexive closure of a set exists. (Contributed by RP, 27-Oct-2020.)
Hypothesis
Ref Expression
rclexi.1 𝐴𝑉
Assertion
Ref Expression
rclexi {𝑥 ∣ (𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem rclexi
StepHypRef Expression
1 ssun1 4128 . 2 𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
2 dmun 5850 . . . . . . 7 dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ dom ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
3 dmresi 6001 . . . . . . . 8 dom ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
43uneq2i 4115 . . . . . . 7 (dom 𝐴 ∪ dom ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴))
5 ssun1 4128 . . . . . . . 8 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 ssequn1 4136 . . . . . . . 8 (dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴))
75, 6mpbi 230 . . . . . . 7 (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
82, 4, 73eqtri 2758 . . . . . 6 dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴)
9 rnun 6092 . . . . . . 7 ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ ran ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
10 rnresi 6024 . . . . . . . 8 ran ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
1110uneq2i 4115 . . . . . . 7 (ran 𝐴 ∪ ran ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴))
12 ssun2 4129 . . . . . . . 8 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
13 ssequn1 4136 . . . . . . . 8 (ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴))
1412, 13mpbi 230 . . . . . . 7 (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
159, 11, 143eqtri 2758 . . . . . 6 ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴)
168, 15uneq12i 4116 . . . . 5 (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) = ((dom 𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴))
17 unidm 4107 . . . . 5 ((dom 𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
1816, 17eqtri 2754 . . . 4 (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) = (dom 𝐴 ∪ ran 𝐴)
1918reseq2i 5925 . . 3 ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) = ( I ↾ (dom 𝐴 ∪ ran 𝐴))
20 ssun2 4129 . . 3 ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
2119, 20eqsstri 3981 . 2 ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
22 rclexi.1 . . . . . 6 𝐴𝑉
2322elexi 3459 . . . . 5 𝐴 ∈ V
24 dmexg 7831 . . . . . . . 8 (𝐴𝑉 → dom 𝐴 ∈ V)
25 rnexg 7832 . . . . . . . 8 (𝐴𝑉 → ran 𝐴 ∈ V)
2624, 25unexd 7687 . . . . . . 7 (𝐴𝑉 → (dom 𝐴 ∪ ran 𝐴) ∈ V)
2726resiexd 7150 . . . . . 6 (𝐴𝑉 → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ∈ V)
2822, 27ax-mp 5 . . . . 5 ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ∈ V
2923, 28unex 7677 . . . 4 (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∈ V
30 dmeq 5843 . . . . . . . 8 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → dom 𝑥 = dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))
31 rneq 5876 . . . . . . . 8 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ran 𝑥 = ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))
3230, 31uneq12d 4119 . . . . . . 7 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))))
3332reseq2d 5928 . . . . . 6 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))))
34 id 22 . . . . . 6 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → 𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))
3533, 34sseq12d 3968 . . . . 5 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))))
3635cleq2lem 43647 . . . 4 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ((𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ (𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))))
3729, 36spcev 3561 . . 3 ((𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) → ∃𝑥(𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))
38 intexab 5284 . . 3 (∃𝑥(𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ {𝑥 ∣ (𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V)
3937, 38sylib 218 . 2 ((𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) → {𝑥 ∣ (𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V)
401, 21, 39mp2an 692 1 {𝑥 ∣ (𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  Vcvv 3436  cun 3900  wss 3902   cint 4897   I cid 5510  dom cdm 5616  ran crn 5617  cres 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator