Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rclexi Structured version   Visualization version   GIF version

Theorem rclexi 43606
Description: The reflexive closure of a set exists. (Contributed by RP, 27-Oct-2020.)
Hypothesis
Ref Expression
rclexi.1 𝐴𝑉
Assertion
Ref Expression
rclexi {𝑥 ∣ (𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem rclexi
StepHypRef Expression
1 ssun1 4158 . 2 𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
2 dmun 5895 . . . . . . 7 dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ dom ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
3 dmresi 6044 . . . . . . . 8 dom ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
43uneq2i 4145 . . . . . . 7 (dom 𝐴 ∪ dom ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴))
5 ssun1 4158 . . . . . . . 8 dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
6 ssequn1 4166 . . . . . . . 8 (dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴))
75, 6mpbi 230 . . . . . . 7 (dom 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
82, 4, 73eqtri 2763 . . . . . 6 dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴)
9 rnun 6139 . . . . . . 7 ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ ran ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
10 rnresi 6067 . . . . . . . 8 ran ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
1110uneq2i 4145 . . . . . . 7 (ran 𝐴 ∪ ran ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴))
12 ssun2 4159 . . . . . . . 8 ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴)
13 ssequn1 4166 . . . . . . . 8 (ran 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) ↔ (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴))
1412, 13mpbi 230 . . . . . . 7 (ran 𝐴 ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
159, 11, 143eqtri 2763 . . . . . 6 ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) = (dom 𝐴 ∪ ran 𝐴)
168, 15uneq12i 4146 . . . . 5 (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) = ((dom 𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴))
17 unidm 4137 . . . . 5 ((dom 𝐴 ∪ ran 𝐴) ∪ (dom 𝐴 ∪ ran 𝐴)) = (dom 𝐴 ∪ ran 𝐴)
1816, 17eqtri 2759 . . . 4 (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) = (dom 𝐴 ∪ ran 𝐴)
1918reseq2i 5968 . . 3 ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) = ( I ↾ (dom 𝐴 ∪ ran 𝐴))
20 ssun2 4159 . . 3 ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
2119, 20eqsstri 4010 . 2 ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
22 rclexi.1 . . . . . 6 𝐴𝑉
2322elexi 3487 . . . . 5 𝐴 ∈ V
24 dmexg 7902 . . . . . . . 8 (𝐴𝑉 → dom 𝐴 ∈ V)
25 rnexg 7903 . . . . . . . 8 (𝐴𝑉 → ran 𝐴 ∈ V)
2624, 25unexd 7753 . . . . . . 7 (𝐴𝑉 → (dom 𝐴 ∪ ran 𝐴) ∈ V)
2726resiexd 7213 . . . . . 6 (𝐴𝑉 → ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ∈ V)
2822, 27ax-mp 5 . . . . 5 ( I ↾ (dom 𝐴 ∪ ran 𝐴)) ∈ V
2923, 28unex 7743 . . . 4 (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∈ V
30 dmeq 5888 . . . . . . . 8 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → dom 𝑥 = dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))
31 rneq 5921 . . . . . . . 8 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ran 𝑥 = ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))
3230, 31uneq12d 4149 . . . . . . 7 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → (dom 𝑥 ∪ ran 𝑥) = (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))))
3332reseq2d 5971 . . . . . 6 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ( I ↾ (dom 𝑥 ∪ ran 𝑥)) = ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))))
34 id 22 . . . . . 6 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → 𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))
3533, 34sseq12d 3997 . . . . 5 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥 ↔ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))))
3635cleq2lem 43599 . . . 4 (𝑥 = (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) → ((𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ (𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))))
3729, 36spcev 3590 . . 3 ((𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) → ∃𝑥(𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))
38 intexab 5321 . . 3 (∃𝑥(𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥) ↔ {𝑥 ∣ (𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V)
3937, 38sylib 218 . 2 ((𝐴 ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∧ ( I ↾ (dom (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))) ∪ ran (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴))))) ⊆ (𝐴 ∪ ( I ↾ (dom 𝐴 ∪ ran 𝐴)))) → {𝑥 ∣ (𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V)
401, 21, 39mp2an 692 1 {𝑥 ∣ (𝐴𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2714  Vcvv 3464  cun 3929  wss 3931   cint 4927   I cid 5552  dom cdm 5659  ran crn 5660  cres 5661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator