MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnegex Structured version   Visualization version   GIF version

Theorem cnegex 10810
Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cnegex (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnegex
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10627 . 2 (𝐴 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)))
2 ax-rnegex 10597 . . . . . . 7 (𝑎 ∈ ℝ → ∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0)
3 ax-rnegex 10597 . . . . . . 7 (𝑏 ∈ ℝ → ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0)
42, 3anim12i 615 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0 ∧ ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0))
5 reeanv 3320 . . . . . 6 (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) ↔ (∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0 ∧ ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0))
64, 5sylibr 237 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0))
7 ax-icn 10585 . . . . . . . . . . 11 i ∈ ℂ
87a1i 11 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → i ∈ ℂ)
9 simplrr 777 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑑 ∈ ℝ)
109recnd 10658 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑑 ∈ ℂ)
118, 10mulcld 10650 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · 𝑑) ∈ ℂ)
12 simplrl 776 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑐 ∈ ℝ)
1312recnd 10658 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑐 ∈ ℂ)
1411, 13addcld 10649 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((i · 𝑑) + 𝑐) ∈ ℂ)
15 simplll 774 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑎 ∈ ℝ)
1615recnd 10658 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑎 ∈ ℂ)
17 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑏 ∈ ℝ)
1817recnd 10658 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑏 ∈ ℂ)
198, 18mulcld 10650 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · 𝑏) ∈ ℂ)
2016, 19, 11addassd 10652 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + (i · 𝑑)) = (𝑎 + ((i · 𝑏) + (i · 𝑑))))
218, 18, 10adddid 10654 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = ((i · 𝑏) + (i · 𝑑)))
22 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑏 + 𝑑) = 0)
2322oveq2d 7151 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = (i · 0))
24 mul01 10808 . . . . . . . . . . . . . . . 16 (i ∈ ℂ → (i · 0) = 0)
257, 24ax-mp 5 . . . . . . . . . . . . . . 15 (i · 0) = 0
2623, 25eqtrdi 2849 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = 0)
2721, 26eqtr3d 2835 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((i · 𝑏) + (i · 𝑑)) = 0)
2827oveq2d 7151 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + ((i · 𝑏) + (i · 𝑑))) = (𝑎 + 0))
29 addid1 10809 . . . . . . . . . . . . 13 (𝑎 ∈ ℂ → (𝑎 + 0) = 𝑎)
3016, 29syl 17 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 0) = 𝑎)
3120, 28, 303eqtrd 2837 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + (i · 𝑑)) = 𝑎)
3231oveq1d 7150 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (((𝑎 + (i · 𝑏)) + (i · 𝑑)) + 𝑐) = (𝑎 + 𝑐))
3316, 19addcld 10649 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + (i · 𝑏)) ∈ ℂ)
3433, 11, 13addassd 10652 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (((𝑎 + (i · 𝑏)) + (i · 𝑑)) + 𝑐) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
3532, 34eqtr3d 2835 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 𝑐) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
36 simprl 770 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 𝑐) = 0)
3735, 36eqtr3d 2835 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0)
38 oveq2 7143 . . . . . . . . . 10 (𝑥 = ((i · 𝑑) + 𝑐) → ((𝑎 + (i · 𝑏)) + 𝑥) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
3938eqeq1d 2800 . . . . . . . . 9 (𝑥 = ((i · 𝑑) + 𝑐) → (((𝑎 + (i · 𝑏)) + 𝑥) = 0 ↔ ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0))
4039rspcev 3571 . . . . . . . 8 ((((i · 𝑑) + 𝑐) ∈ ℂ ∧ ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
4114, 37, 40syl2anc 587 . . . . . . 7 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
4241ex 416 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4342rexlimdvva 3253 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
446, 43mpd 15 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
45 oveq1 7142 . . . . . 6 (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 + 𝑥) = ((𝑎 + (i · 𝑏)) + 𝑥))
4645eqeq1d 2800 . . . . 5 (𝐴 = (𝑎 + (i · 𝑏)) → ((𝐴 + 𝑥) = 0 ↔ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4746rexbidv 3256 . . . 4 (𝐴 = (𝑎 + (i · 𝑏)) → (∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4844, 47syl5ibrcom 250 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝐴 = (𝑎 + (i · 𝑏)) → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
4948rexlimivv 3251 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)) → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
501, 49syl 17 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3107  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  ici 10528   + caddc 10529   · cmul 10531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669
This theorem is referenced by:  addid2  10812  addcan2  10814  0cnALT2  10864  negeu  10865
  Copyright terms: Public domain W3C validator