MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnegex Structured version   Visualization version   GIF version

Theorem cnegex 10815
Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cnegex (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnegex
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10632 . 2 (𝐴 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)))
2 ax-rnegex 10602 . . . . . . 7 (𝑎 ∈ ℝ → ∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0)
3 ax-rnegex 10602 . . . . . . 7 (𝑏 ∈ ℝ → ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0)
42, 3anim12i 614 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0 ∧ ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0))
5 reeanv 3368 . . . . . 6 (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) ↔ (∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0 ∧ ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0))
64, 5sylibr 236 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0))
7 ax-icn 10590 . . . . . . . . . . 11 i ∈ ℂ
87a1i 11 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → i ∈ ℂ)
9 simplrr 776 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑑 ∈ ℝ)
109recnd 10663 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑑 ∈ ℂ)
118, 10mulcld 10655 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · 𝑑) ∈ ℂ)
12 simplrl 775 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑐 ∈ ℝ)
1312recnd 10663 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑐 ∈ ℂ)
1411, 13addcld 10654 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((i · 𝑑) + 𝑐) ∈ ℂ)
15 simplll 773 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑎 ∈ ℝ)
1615recnd 10663 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑎 ∈ ℂ)
17 simpllr 774 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑏 ∈ ℝ)
1817recnd 10663 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑏 ∈ ℂ)
198, 18mulcld 10655 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · 𝑏) ∈ ℂ)
2016, 19, 11addassd 10657 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + (i · 𝑑)) = (𝑎 + ((i · 𝑏) + (i · 𝑑))))
218, 18, 10adddid 10659 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = ((i · 𝑏) + (i · 𝑑)))
22 simprr 771 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑏 + 𝑑) = 0)
2322oveq2d 7166 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = (i · 0))
24 mul01 10813 . . . . . . . . . . . . . . . 16 (i ∈ ℂ → (i · 0) = 0)
257, 24ax-mp 5 . . . . . . . . . . . . . . 15 (i · 0) = 0
2623, 25syl6eq 2872 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = 0)
2721, 26eqtr3d 2858 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((i · 𝑏) + (i · 𝑑)) = 0)
2827oveq2d 7166 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + ((i · 𝑏) + (i · 𝑑))) = (𝑎 + 0))
29 addid1 10814 . . . . . . . . . . . . 13 (𝑎 ∈ ℂ → (𝑎 + 0) = 𝑎)
3016, 29syl 17 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 0) = 𝑎)
3120, 28, 303eqtrd 2860 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + (i · 𝑑)) = 𝑎)
3231oveq1d 7165 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (((𝑎 + (i · 𝑏)) + (i · 𝑑)) + 𝑐) = (𝑎 + 𝑐))
3316, 19addcld 10654 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + (i · 𝑏)) ∈ ℂ)
3433, 11, 13addassd 10657 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (((𝑎 + (i · 𝑏)) + (i · 𝑑)) + 𝑐) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
3532, 34eqtr3d 2858 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 𝑐) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
36 simprl 769 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 𝑐) = 0)
3735, 36eqtr3d 2858 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0)
38 oveq2 7158 . . . . . . . . . 10 (𝑥 = ((i · 𝑑) + 𝑐) → ((𝑎 + (i · 𝑏)) + 𝑥) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
3938eqeq1d 2823 . . . . . . . . 9 (𝑥 = ((i · 𝑑) + 𝑐) → (((𝑎 + (i · 𝑏)) + 𝑥) = 0 ↔ ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0))
4039rspcev 3623 . . . . . . . 8 ((((i · 𝑑) + 𝑐) ∈ ℂ ∧ ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
4114, 37, 40syl2anc 586 . . . . . . 7 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
4241ex 415 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4342rexlimdvva 3294 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
446, 43mpd 15 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
45 oveq1 7157 . . . . . 6 (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 + 𝑥) = ((𝑎 + (i · 𝑏)) + 𝑥))
4645eqeq1d 2823 . . . . 5 (𝐴 = (𝑎 + (i · 𝑏)) → ((𝐴 + 𝑥) = 0 ↔ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4746rexbidv 3297 . . . 4 (𝐴 = (𝑎 + (i · 𝑏)) → (∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4844, 47syl5ibrcom 249 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝐴 = (𝑎 + (i · 𝑏)) → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
4948rexlimivv 3292 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)) → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
501, 49syl 17 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wrex 3139  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  ici 10533   + caddc 10534   · cmul 10536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-ltxr 10674
This theorem is referenced by:  addid2  10817  addcan2  10819  0cnALT2  10869  negeu  10870
  Copyright terms: Public domain W3C validator