MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnegex Structured version   Visualization version   GIF version

Theorem cnegex 11336
Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cnegex (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnegex
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11152 . 2 (𝐴 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)))
2 ax-rnegex 11122 . . . . . . 7 (𝑎 ∈ ℝ → ∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0)
3 ax-rnegex 11122 . . . . . . 7 (𝑏 ∈ ℝ → ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0)
42, 3anim12i 613 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0 ∧ ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0))
5 reeanv 3217 . . . . . 6 (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) ↔ (∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0 ∧ ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0))
64, 5sylibr 233 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0))
7 ax-icn 11110 . . . . . . . . . . 11 i ∈ ℂ
87a1i 11 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → i ∈ ℂ)
9 simplrr 776 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑑 ∈ ℝ)
109recnd 11183 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑑 ∈ ℂ)
118, 10mulcld 11175 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · 𝑑) ∈ ℂ)
12 simplrl 775 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑐 ∈ ℝ)
1312recnd 11183 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑐 ∈ ℂ)
1411, 13addcld 11174 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((i · 𝑑) + 𝑐) ∈ ℂ)
15 simplll 773 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑎 ∈ ℝ)
1615recnd 11183 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑎 ∈ ℂ)
17 simpllr 774 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑏 ∈ ℝ)
1817recnd 11183 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑏 ∈ ℂ)
198, 18mulcld 11175 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · 𝑏) ∈ ℂ)
2016, 19, 11addassd 11177 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + (i · 𝑑)) = (𝑎 + ((i · 𝑏) + (i · 𝑑))))
218, 18, 10adddid 11179 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = ((i · 𝑏) + (i · 𝑑)))
22 simprr 771 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑏 + 𝑑) = 0)
2322oveq2d 7373 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = (i · 0))
24 mul01 11334 . . . . . . . . . . . . . . . 16 (i ∈ ℂ → (i · 0) = 0)
257, 24ax-mp 5 . . . . . . . . . . . . . . 15 (i · 0) = 0
2623, 25eqtrdi 2792 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = 0)
2721, 26eqtr3d 2778 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((i · 𝑏) + (i · 𝑑)) = 0)
2827oveq2d 7373 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + ((i · 𝑏) + (i · 𝑑))) = (𝑎 + 0))
29 addid1 11335 . . . . . . . . . . . . 13 (𝑎 ∈ ℂ → (𝑎 + 0) = 𝑎)
3016, 29syl 17 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 0) = 𝑎)
3120, 28, 303eqtrd 2780 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + (i · 𝑑)) = 𝑎)
3231oveq1d 7372 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (((𝑎 + (i · 𝑏)) + (i · 𝑑)) + 𝑐) = (𝑎 + 𝑐))
3316, 19addcld 11174 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + (i · 𝑏)) ∈ ℂ)
3433, 11, 13addassd 11177 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (((𝑎 + (i · 𝑏)) + (i · 𝑑)) + 𝑐) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
3532, 34eqtr3d 2778 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 𝑐) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
36 simprl 769 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 𝑐) = 0)
3735, 36eqtr3d 2778 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0)
38 oveq2 7365 . . . . . . . . . 10 (𝑥 = ((i · 𝑑) + 𝑐) → ((𝑎 + (i · 𝑏)) + 𝑥) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
3938eqeq1d 2738 . . . . . . . . 9 (𝑥 = ((i · 𝑑) + 𝑐) → (((𝑎 + (i · 𝑏)) + 𝑥) = 0 ↔ ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0))
4039rspcev 3581 . . . . . . . 8 ((((i · 𝑑) + 𝑐) ∈ ℂ ∧ ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
4114, 37, 40syl2anc 584 . . . . . . 7 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
4241ex 413 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4342rexlimdvva 3205 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
446, 43mpd 15 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
45 oveq1 7364 . . . . . 6 (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 + 𝑥) = ((𝑎 + (i · 𝑏)) + 𝑥))
4645eqeq1d 2738 . . . . 5 (𝐴 = (𝑎 + (i · 𝑏)) → ((𝐴 + 𝑥) = 0 ↔ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4746rexbidv 3175 . . . 4 (𝐴 = (𝑎 + (i · 𝑏)) → (∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4844, 47syl5ibrcom 246 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝐴 = (𝑎 + (i · 𝑏)) → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
4948rexlimivv 3196 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)) → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
501, 49syl 17 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3073  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  ici 11053   + caddc 11054   · cmul 11056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194
This theorem is referenced by:  addid2  11338  addcan2  11340  0cnALT2  11390  negeu  11391
  Copyright terms: Public domain W3C validator