MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnegex Structured version   Visualization version   GIF version

Theorem cnegex 10815
Description: Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cnegex (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnegex
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10632 . 2 (𝐴 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)))
2 ax-rnegex 10602 . . . . . . 7 (𝑎 ∈ ℝ → ∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0)
3 ax-rnegex 10602 . . . . . . 7 (𝑏 ∈ ℝ → ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0)
42, 3anim12i 615 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0 ∧ ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0))
5 reeanv 3359 . . . . . 6 (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) ↔ (∃𝑐 ∈ ℝ (𝑎 + 𝑐) = 0 ∧ ∃𝑑 ∈ ℝ (𝑏 + 𝑑) = 0))
64, 5sylibr 237 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0))
7 ax-icn 10590 . . . . . . . . . . 11 i ∈ ℂ
87a1i 11 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → i ∈ ℂ)
9 simplrr 777 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑑 ∈ ℝ)
109recnd 10663 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑑 ∈ ℂ)
118, 10mulcld 10655 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · 𝑑) ∈ ℂ)
12 simplrl 776 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑐 ∈ ℝ)
1312recnd 10663 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑐 ∈ ℂ)
1411, 13addcld 10654 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((i · 𝑑) + 𝑐) ∈ ℂ)
15 simplll 774 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑎 ∈ ℝ)
1615recnd 10663 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑎 ∈ ℂ)
17 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑏 ∈ ℝ)
1817recnd 10663 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → 𝑏 ∈ ℂ)
198, 18mulcld 10655 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · 𝑏) ∈ ℂ)
2016, 19, 11addassd 10657 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + (i · 𝑑)) = (𝑎 + ((i · 𝑏) + (i · 𝑑))))
218, 18, 10adddid 10659 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = ((i · 𝑏) + (i · 𝑑)))
22 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑏 + 𝑑) = 0)
2322oveq2d 7162 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = (i · 0))
24 mul01 10813 . . . . . . . . . . . . . . . 16 (i ∈ ℂ → (i · 0) = 0)
257, 24ax-mp 5 . . . . . . . . . . . . . . 15 (i · 0) = 0
2623, 25syl6eq 2875 . . . . . . . . . . . . . 14 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (i · (𝑏 + 𝑑)) = 0)
2721, 26eqtr3d 2861 . . . . . . . . . . . . 13 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((i · 𝑏) + (i · 𝑑)) = 0)
2827oveq2d 7162 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + ((i · 𝑏) + (i · 𝑑))) = (𝑎 + 0))
29 addid1 10814 . . . . . . . . . . . . 13 (𝑎 ∈ ℂ → (𝑎 + 0) = 𝑎)
3016, 29syl 17 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 0) = 𝑎)
3120, 28, 303eqtrd 2863 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + (i · 𝑑)) = 𝑎)
3231oveq1d 7161 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (((𝑎 + (i · 𝑏)) + (i · 𝑑)) + 𝑐) = (𝑎 + 𝑐))
3316, 19addcld 10654 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + (i · 𝑏)) ∈ ℂ)
3433, 11, 13addassd 10657 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (((𝑎 + (i · 𝑏)) + (i · 𝑑)) + 𝑐) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
3532, 34eqtr3d 2861 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 𝑐) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
36 simprl 770 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → (𝑎 + 𝑐) = 0)
3735, 36eqtr3d 2861 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0)
38 oveq2 7154 . . . . . . . . . 10 (𝑥 = ((i · 𝑑) + 𝑐) → ((𝑎 + (i · 𝑏)) + 𝑥) = ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)))
3938eqeq1d 2826 . . . . . . . . 9 (𝑥 = ((i · 𝑑) + 𝑐) → (((𝑎 + (i · 𝑏)) + 𝑥) = 0 ↔ ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0))
4039rspcev 3609 . . . . . . . 8 ((((i · 𝑑) + 𝑐) ∈ ℂ ∧ ((𝑎 + (i · 𝑏)) + ((i · 𝑑) + 𝑐)) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
4114, 37, 40syl2anc 587 . . . . . . 7 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0)) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
4241ex 416 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4342rexlimdvva 3287 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ ((𝑎 + 𝑐) = 0 ∧ (𝑏 + 𝑑) = 0) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
446, 43mpd 15 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0)
45 oveq1 7153 . . . . . 6 (𝐴 = (𝑎 + (i · 𝑏)) → (𝐴 + 𝑥) = ((𝑎 + (i · 𝑏)) + 𝑥))
4645eqeq1d 2826 . . . . 5 (𝐴 = (𝑎 + (i · 𝑏)) → ((𝐴 + 𝑥) = 0 ↔ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4746rexbidv 3290 . . . 4 (𝐴 = (𝑎 + (i · 𝑏)) → (∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 ↔ ∃𝑥 ∈ ℂ ((𝑎 + (i · 𝑏)) + 𝑥) = 0))
4844, 47syl5ibrcom 250 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝐴 = (𝑎 + (i · 𝑏)) → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
4948rexlimivv 3285 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝐴 = (𝑎 + (i · 𝑏)) → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
501, 49syl 17 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wrex 3134  (class class class)co 7146  cc 10529  cr 10530  0cc0 10531  ici 10533   + caddc 10534   · cmul 10536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7149  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-ltxr 10674
This theorem is referenced by:  addid2  10817  addcan2  10819  0cnALT2  10869  negeu  10870
  Copyright terms: Public domain W3C validator