MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem11 Structured version   Visualization version   GIF version

Theorem ipasslem11 29103
Description: Lemma for ipassi 29104. Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem11.a 𝐴𝑋
ipasslem11.b 𝐵𝑋
Assertion
Ref Expression
ipasslem11 (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem11
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10903 . 2 (𝐶 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐶 = (𝑥 + (i · 𝑦)))
2 ax-icn 10861 . . . . . . . 8 i ∈ ℂ
3 recn 10892 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
4 mulcom 10888 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) = (𝑦 · i))
52, 3, 4sylancr 586 . . . . . . 7 (𝑦 ∈ ℝ → (i · 𝑦) = (𝑦 · i))
65adantl 481 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) = (𝑦 · i))
76oveq2d 7271 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) = (𝑥 + (𝑦 · i)))
87eqeq2d 2749 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (i · 𝑦)) ↔ 𝐶 = (𝑥 + (𝑦 · i))))
9 recn 10892 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
10 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
1110phnvi 29079 . . . . . . . . . 10 𝑈 ∈ NrmCVec
12 ipasslem11.a . . . . . . . . . 10 𝐴𝑋
13 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
14 ip1i.4 . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
1513, 14nvscl 28889 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
1611, 12, 15mp3an13 1450 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥𝑆𝐴) ∈ 𝑋)
179, 16syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥𝑆𝐴) ∈ 𝑋)
18 mulcl 10886 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ i ∈ ℂ) → (𝑦 · i) ∈ ℂ)
193, 2, 18sylancl 585 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 · i) ∈ ℂ)
2013, 14nvscl 28889 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋) → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
2111, 12, 20mp3an13 1450 . . . . . . . . 9 ((𝑦 · i) ∈ ℂ → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
2219, 21syl 17 . . . . . . . 8 (𝑦 ∈ ℝ → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
23 ipasslem11.b . . . . . . . . 9 𝐵𝑋
24 ip1i.2 . . . . . . . . . 10 𝐺 = ( +𝑣𝑈)
25 ip1i.7 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
2613, 24, 14, 25, 10ipdiri 29093 . . . . . . . . 9 (((𝑥𝑆𝐴) ∈ 𝑋 ∧ ((𝑦 · i)𝑆𝐴) ∈ 𝑋𝐵𝑋) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2723, 26mp3an3 1448 . . . . . . . 8 (((𝑥𝑆𝐴) ∈ 𝑋 ∧ ((𝑦 · i)𝑆𝐴) ∈ 𝑋) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2817, 22, 27syl2an 595 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2913, 24, 14, 25, 10, 12, 23ipasslem9 29101 . . . . . . . 8 (𝑥 ∈ ℝ → ((𝑥𝑆𝐴)𝑃𝐵) = (𝑥 · (𝐴𝑃𝐵)))
3013, 14nvscl 28889 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐴𝑋) → (i𝑆𝐴) ∈ 𝑋)
3111, 2, 12, 30mp3an 1459 . . . . . . . . . 10 (i𝑆𝐴) ∈ 𝑋
3213, 24, 14, 25, 10, 31, 23ipasslem9 29101 . . . . . . . . 9 (𝑦 ∈ ℝ → ((𝑦𝑆(i𝑆𝐴))𝑃𝐵) = (𝑦 · ((i𝑆𝐴)𝑃𝐵)))
3313, 14nvsass 28891 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋)) → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
3411, 33mpan 686 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋) → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
352, 12, 34mp3an23 1451 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
363, 35syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
3736oveq1d 7270 . . . . . . . . 9 (𝑦 ∈ ℝ → (((𝑦 · i)𝑆𝐴)𝑃𝐵) = ((𝑦𝑆(i𝑆𝐴))𝑃𝐵))
3813, 25dipcl 28975 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
3911, 12, 23, 38mp3an 1459 . . . . . . . . . . . 12 (𝐴𝑃𝐵) ∈ ℂ
40 mulass 10890 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
412, 39, 40mp3an23 1451 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
423, 41syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
43 eqid 2738 . . . . . . . . . . . 12 (normCV𝑈) = (normCV𝑈)
4413, 24, 14, 25, 10, 12, 23, 43ipasslem10 29102 . . . . . . . . . . 11 ((i𝑆𝐴)𝑃𝐵) = (i · (𝐴𝑃𝐵))
4544oveq2i 7266 . . . . . . . . . 10 (𝑦 · ((i𝑆𝐴)𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵)))
4642, 45eqtr4di 2797 . . . . . . . . 9 (𝑦 ∈ ℝ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · ((i𝑆𝐴)𝑃𝐵)))
4732, 37, 463eqtr4d 2788 . . . . . . . 8 (𝑦 ∈ ℝ → (((𝑦 · i)𝑆𝐴)𝑃𝐵) = ((𝑦 · i) · (𝐴𝑃𝐵)))
4829, 47oveqan12d 7274 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
4928, 48eqtrd 2778 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5013, 24, 14nvdir 28894 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5111, 50mpan 686 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5212, 51mp3an3 1448 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
539, 19, 52syl2an 595 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5453oveq1d 7270 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵))
55 adddir 10897 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5639, 55mp3an3 1448 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
579, 19, 56syl2an 595 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5849, 54, 573eqtr4d 2788 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)))
59 oveq1 7262 . . . . . . 7 (𝐶 = (𝑥 + (𝑦 · i)) → (𝐶𝑆𝐴) = ((𝑥 + (𝑦 · i))𝑆𝐴))
6059oveq1d 7270 . . . . . 6 (𝐶 = (𝑥 + (𝑦 · i)) → ((𝐶𝑆𝐴)𝑃𝐵) = (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵))
61 oveq1 7262 . . . . . 6 (𝐶 = (𝑥 + (𝑦 · i)) → (𝐶 · (𝐴𝑃𝐵)) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)))
6260, 61eqeq12d 2754 . . . . 5 (𝐶 = (𝑥 + (𝑦 · i)) → (((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)) ↔ (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵))))
6358, 62syl5ibrcom 246 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (𝑦 · i)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
648, 63sylbid 239 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (i · 𝑦)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
6564rexlimivv 3220 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐶 = (𝑥 + (i · 𝑦)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
661, 65syl 17 1 (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  ici 10804   + caddc 10805   · cmul 10807  NrmCVeccnv 28847   +𝑣 cpv 28848  BaseSetcba 28849   ·𝑠OLD cns 28850  normCVcnmcv 28853  ·𝑖OLDcdip 28963  CPreHilOLDccphlo 29075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-cn 22286  df-cnp 22287  df-t1 22373  df-haus 22374  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-dip 28964  df-ph 29076
This theorem is referenced by:  ipassi  29104
  Copyright terms: Public domain W3C validator