MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem11 Structured version   Visualization version   GIF version

Theorem ipasslem11 30872
Description: Lemma for ipassi 30873. Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem11.a 𝐴𝑋
ipasslem11.b 𝐵𝑋
Assertion
Ref Expression
ipasslem11 (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem11
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11287 . 2 (𝐶 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐶 = (𝑥 + (i · 𝑦)))
2 ax-icn 11243 . . . . . . . 8 i ∈ ℂ
3 recn 11274 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
4 mulcom 11270 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) = (𝑦 · i))
52, 3, 4sylancr 586 . . . . . . 7 (𝑦 ∈ ℝ → (i · 𝑦) = (𝑦 · i))
65adantl 481 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) = (𝑦 · i))
76oveq2d 7464 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) = (𝑥 + (𝑦 · i)))
87eqeq2d 2751 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (i · 𝑦)) ↔ 𝐶 = (𝑥 + (𝑦 · i))))
9 recn 11274 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
10 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
1110phnvi 30848 . . . . . . . . . 10 𝑈 ∈ NrmCVec
12 ipasslem11.a . . . . . . . . . 10 𝐴𝑋
13 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
14 ip1i.4 . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
1513, 14nvscl 30658 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
1611, 12, 15mp3an13 1452 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥𝑆𝐴) ∈ 𝑋)
179, 16syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥𝑆𝐴) ∈ 𝑋)
18 mulcl 11268 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ i ∈ ℂ) → (𝑦 · i) ∈ ℂ)
193, 2, 18sylancl 585 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 · i) ∈ ℂ)
2013, 14nvscl 30658 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋) → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
2111, 12, 20mp3an13 1452 . . . . . . . . 9 ((𝑦 · i) ∈ ℂ → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
2219, 21syl 17 . . . . . . . 8 (𝑦 ∈ ℝ → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
23 ipasslem11.b . . . . . . . . 9 𝐵𝑋
24 ip1i.2 . . . . . . . . . 10 𝐺 = ( +𝑣𝑈)
25 ip1i.7 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
2613, 24, 14, 25, 10ipdiri 30862 . . . . . . . . 9 (((𝑥𝑆𝐴) ∈ 𝑋 ∧ ((𝑦 · i)𝑆𝐴) ∈ 𝑋𝐵𝑋) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2723, 26mp3an3 1450 . . . . . . . 8 (((𝑥𝑆𝐴) ∈ 𝑋 ∧ ((𝑦 · i)𝑆𝐴) ∈ 𝑋) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2817, 22, 27syl2an 595 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2913, 24, 14, 25, 10, 12, 23ipasslem9 30870 . . . . . . . 8 (𝑥 ∈ ℝ → ((𝑥𝑆𝐴)𝑃𝐵) = (𝑥 · (𝐴𝑃𝐵)))
3013, 14nvscl 30658 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐴𝑋) → (i𝑆𝐴) ∈ 𝑋)
3111, 2, 12, 30mp3an 1461 . . . . . . . . . 10 (i𝑆𝐴) ∈ 𝑋
3213, 24, 14, 25, 10, 31, 23ipasslem9 30870 . . . . . . . . 9 (𝑦 ∈ ℝ → ((𝑦𝑆(i𝑆𝐴))𝑃𝐵) = (𝑦 · ((i𝑆𝐴)𝑃𝐵)))
3313, 14nvsass 30660 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋)) → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
3411, 33mpan 689 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋) → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
352, 12, 34mp3an23 1453 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
363, 35syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
3736oveq1d 7463 . . . . . . . . 9 (𝑦 ∈ ℝ → (((𝑦 · i)𝑆𝐴)𝑃𝐵) = ((𝑦𝑆(i𝑆𝐴))𝑃𝐵))
3813, 25dipcl 30744 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
3911, 12, 23, 38mp3an 1461 . . . . . . . . . . . 12 (𝐴𝑃𝐵) ∈ ℂ
40 mulass 11272 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
412, 39, 40mp3an23 1453 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
423, 41syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
43 eqid 2740 . . . . . . . . . . . 12 (normCV𝑈) = (normCV𝑈)
4413, 24, 14, 25, 10, 12, 23, 43ipasslem10 30871 . . . . . . . . . . 11 ((i𝑆𝐴)𝑃𝐵) = (i · (𝐴𝑃𝐵))
4544oveq2i 7459 . . . . . . . . . 10 (𝑦 · ((i𝑆𝐴)𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵)))
4642, 45eqtr4di 2798 . . . . . . . . 9 (𝑦 ∈ ℝ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · ((i𝑆𝐴)𝑃𝐵)))
4732, 37, 463eqtr4d 2790 . . . . . . . 8 (𝑦 ∈ ℝ → (((𝑦 · i)𝑆𝐴)𝑃𝐵) = ((𝑦 · i) · (𝐴𝑃𝐵)))
4829, 47oveqan12d 7467 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
4928, 48eqtrd 2780 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5013, 24, 14nvdir 30663 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5111, 50mpan 689 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5212, 51mp3an3 1450 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
539, 19, 52syl2an 595 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5453oveq1d 7463 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵))
55 adddir 11281 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5639, 55mp3an3 1450 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
579, 19, 56syl2an 595 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5849, 54, 573eqtr4d 2790 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)))
59 oveq1 7455 . . . . . . 7 (𝐶 = (𝑥 + (𝑦 · i)) → (𝐶𝑆𝐴) = ((𝑥 + (𝑦 · i))𝑆𝐴))
6059oveq1d 7463 . . . . . 6 (𝐶 = (𝑥 + (𝑦 · i)) → ((𝐶𝑆𝐴)𝑃𝐵) = (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵))
61 oveq1 7455 . . . . . 6 (𝐶 = (𝑥 + (𝑦 · i)) → (𝐶 · (𝐴𝑃𝐵)) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)))
6260, 61eqeq12d 2756 . . . . 5 (𝐶 = (𝑥 + (𝑦 · i)) → (((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)) ↔ (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵))))
6358, 62syl5ibrcom 247 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (𝑦 · i)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
648, 63sylbid 240 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (i · 𝑦)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
6564rexlimivv 3207 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐶 = (𝑥 + (i · 𝑦)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
661, 65syl 17 1 (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  ici 11186   + caddc 11187   · cmul 11189  NrmCVeccnv 30616   +𝑣 cpv 30617  BaseSetcba 30618   ·𝑠OLD cns 30619  normCVcnmcv 30622  ·𝑖OLDcdip 30732  CPreHilOLDccphlo 30844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-cn 23256  df-cnp 23257  df-t1 23343  df-haus 23344  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-ph 30845
This theorem is referenced by:  ipassi  30873
  Copyright terms: Public domain W3C validator