MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem11 Structured version   Visualization version   GIF version

Theorem ipasslem11 30769
Description: Lemma for ipassi 30770. Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem11.a 𝐴𝑋
ipasslem11.b 𝐵𝑋
Assertion
Ref Expression
ipasslem11 (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem11
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11171 . 2 (𝐶 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐶 = (𝑥 + (i · 𝑦)))
2 ax-icn 11127 . . . . . . . 8 i ∈ ℂ
3 recn 11158 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
4 mulcom 11154 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) = (𝑦 · i))
52, 3, 4sylancr 587 . . . . . . 7 (𝑦 ∈ ℝ → (i · 𝑦) = (𝑦 · i))
65adantl 481 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) = (𝑦 · i))
76oveq2d 7403 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) = (𝑥 + (𝑦 · i)))
87eqeq2d 2740 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (i · 𝑦)) ↔ 𝐶 = (𝑥 + (𝑦 · i))))
9 recn 11158 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
10 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
1110phnvi 30745 . . . . . . . . . 10 𝑈 ∈ NrmCVec
12 ipasslem11.a . . . . . . . . . 10 𝐴𝑋
13 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
14 ip1i.4 . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
1513, 14nvscl 30555 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
1611, 12, 15mp3an13 1454 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥𝑆𝐴) ∈ 𝑋)
179, 16syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥𝑆𝐴) ∈ 𝑋)
18 mulcl 11152 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ i ∈ ℂ) → (𝑦 · i) ∈ ℂ)
193, 2, 18sylancl 586 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 · i) ∈ ℂ)
2013, 14nvscl 30555 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋) → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
2111, 12, 20mp3an13 1454 . . . . . . . . 9 ((𝑦 · i) ∈ ℂ → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
2219, 21syl 17 . . . . . . . 8 (𝑦 ∈ ℝ → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
23 ipasslem11.b . . . . . . . . 9 𝐵𝑋
24 ip1i.2 . . . . . . . . . 10 𝐺 = ( +𝑣𝑈)
25 ip1i.7 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
2613, 24, 14, 25, 10ipdiri 30759 . . . . . . . . 9 (((𝑥𝑆𝐴) ∈ 𝑋 ∧ ((𝑦 · i)𝑆𝐴) ∈ 𝑋𝐵𝑋) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2723, 26mp3an3 1452 . . . . . . . 8 (((𝑥𝑆𝐴) ∈ 𝑋 ∧ ((𝑦 · i)𝑆𝐴) ∈ 𝑋) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2817, 22, 27syl2an 596 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2913, 24, 14, 25, 10, 12, 23ipasslem9 30767 . . . . . . . 8 (𝑥 ∈ ℝ → ((𝑥𝑆𝐴)𝑃𝐵) = (𝑥 · (𝐴𝑃𝐵)))
3013, 14nvscl 30555 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐴𝑋) → (i𝑆𝐴) ∈ 𝑋)
3111, 2, 12, 30mp3an 1463 . . . . . . . . . 10 (i𝑆𝐴) ∈ 𝑋
3213, 24, 14, 25, 10, 31, 23ipasslem9 30767 . . . . . . . . 9 (𝑦 ∈ ℝ → ((𝑦𝑆(i𝑆𝐴))𝑃𝐵) = (𝑦 · ((i𝑆𝐴)𝑃𝐵)))
3313, 14nvsass 30557 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋)) → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
3411, 33mpan 690 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋) → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
352, 12, 34mp3an23 1455 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
363, 35syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
3736oveq1d 7402 . . . . . . . . 9 (𝑦 ∈ ℝ → (((𝑦 · i)𝑆𝐴)𝑃𝐵) = ((𝑦𝑆(i𝑆𝐴))𝑃𝐵))
3813, 25dipcl 30641 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
3911, 12, 23, 38mp3an 1463 . . . . . . . . . . . 12 (𝐴𝑃𝐵) ∈ ℂ
40 mulass 11156 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
412, 39, 40mp3an23 1455 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
423, 41syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
43 eqid 2729 . . . . . . . . . . . 12 (normCV𝑈) = (normCV𝑈)
4413, 24, 14, 25, 10, 12, 23, 43ipasslem10 30768 . . . . . . . . . . 11 ((i𝑆𝐴)𝑃𝐵) = (i · (𝐴𝑃𝐵))
4544oveq2i 7398 . . . . . . . . . 10 (𝑦 · ((i𝑆𝐴)𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵)))
4642, 45eqtr4di 2782 . . . . . . . . 9 (𝑦 ∈ ℝ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · ((i𝑆𝐴)𝑃𝐵)))
4732, 37, 463eqtr4d 2774 . . . . . . . 8 (𝑦 ∈ ℝ → (((𝑦 · i)𝑆𝐴)𝑃𝐵) = ((𝑦 · i) · (𝐴𝑃𝐵)))
4829, 47oveqan12d 7406 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
4928, 48eqtrd 2764 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5013, 24, 14nvdir 30560 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5111, 50mpan 690 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5212, 51mp3an3 1452 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
539, 19, 52syl2an 596 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5453oveq1d 7402 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵))
55 adddir 11165 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5639, 55mp3an3 1452 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
579, 19, 56syl2an 596 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5849, 54, 573eqtr4d 2774 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)))
59 oveq1 7394 . . . . . . 7 (𝐶 = (𝑥 + (𝑦 · i)) → (𝐶𝑆𝐴) = ((𝑥 + (𝑦 · i))𝑆𝐴))
6059oveq1d 7402 . . . . . 6 (𝐶 = (𝑥 + (𝑦 · i)) → ((𝐶𝑆𝐴)𝑃𝐵) = (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵))
61 oveq1 7394 . . . . . 6 (𝐶 = (𝑥 + (𝑦 · i)) → (𝐶 · (𝐴𝑃𝐵)) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)))
6260, 61eqeq12d 2745 . . . . 5 (𝐶 = (𝑥 + (𝑦 · i)) → (((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)) ↔ (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵))))
6358, 62syl5ibrcom 247 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (𝑦 · i)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
648, 63sylbid 240 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (i · 𝑦)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
6564rexlimivv 3179 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐶 = (𝑥 + (i · 𝑦)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
661, 65syl 17 1 (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  ici 11070   + caddc 11071   · cmul 11073  NrmCVeccnv 30513   +𝑣 cpv 30514  BaseSetcba 30515   ·𝑠OLD cns 30516  normCVcnmcv 30519  ·𝑖OLDcdip 30629  CPreHilOLDccphlo 30741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-cn 23114  df-cnp 23115  df-t1 23201  df-haus 23202  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-ph 30742
This theorem is referenced by:  ipassi  30770
  Copyright terms: Public domain W3C validator