MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem11 Structured version   Visualization version   GIF version

Theorem ipasslem11 30644
Description: Lemma for ipassi 30645. Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem11.a 𝐴𝑋
ipasslem11.b 𝐵𝑋
Assertion
Ref Expression
ipasslem11 (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem11
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11236 . 2 (𝐶 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐶 = (𝑥 + (i · 𝑦)))
2 ax-icn 11192 . . . . . . . 8 i ∈ ℂ
3 recn 11223 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
4 mulcom 11219 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) = (𝑦 · i))
52, 3, 4sylancr 586 . . . . . . 7 (𝑦 ∈ ℝ → (i · 𝑦) = (𝑦 · i))
65adantl 481 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) = (𝑦 · i))
76oveq2d 7431 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) = (𝑥 + (𝑦 · i)))
87eqeq2d 2739 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (i · 𝑦)) ↔ 𝐶 = (𝑥 + (𝑦 · i))))
9 recn 11223 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
10 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
1110phnvi 30620 . . . . . . . . . 10 𝑈 ∈ NrmCVec
12 ipasslem11.a . . . . . . . . . 10 𝐴𝑋
13 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
14 ip1i.4 . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
1513, 14nvscl 30430 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
1611, 12, 15mp3an13 1449 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥𝑆𝐴) ∈ 𝑋)
179, 16syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥𝑆𝐴) ∈ 𝑋)
18 mulcl 11217 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ i ∈ ℂ) → (𝑦 · i) ∈ ℂ)
193, 2, 18sylancl 585 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 · i) ∈ ℂ)
2013, 14nvscl 30430 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋) → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
2111, 12, 20mp3an13 1449 . . . . . . . . 9 ((𝑦 · i) ∈ ℂ → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
2219, 21syl 17 . . . . . . . 8 (𝑦 ∈ ℝ → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
23 ipasslem11.b . . . . . . . . 9 𝐵𝑋
24 ip1i.2 . . . . . . . . . 10 𝐺 = ( +𝑣𝑈)
25 ip1i.7 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
2613, 24, 14, 25, 10ipdiri 30634 . . . . . . . . 9 (((𝑥𝑆𝐴) ∈ 𝑋 ∧ ((𝑦 · i)𝑆𝐴) ∈ 𝑋𝐵𝑋) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2723, 26mp3an3 1447 . . . . . . . 8 (((𝑥𝑆𝐴) ∈ 𝑋 ∧ ((𝑦 · i)𝑆𝐴) ∈ 𝑋) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2817, 22, 27syl2an 595 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2913, 24, 14, 25, 10, 12, 23ipasslem9 30642 . . . . . . . 8 (𝑥 ∈ ℝ → ((𝑥𝑆𝐴)𝑃𝐵) = (𝑥 · (𝐴𝑃𝐵)))
3013, 14nvscl 30430 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐴𝑋) → (i𝑆𝐴) ∈ 𝑋)
3111, 2, 12, 30mp3an 1458 . . . . . . . . . 10 (i𝑆𝐴) ∈ 𝑋
3213, 24, 14, 25, 10, 31, 23ipasslem9 30642 . . . . . . . . 9 (𝑦 ∈ ℝ → ((𝑦𝑆(i𝑆𝐴))𝑃𝐵) = (𝑦 · ((i𝑆𝐴)𝑃𝐵)))
3313, 14nvsass 30432 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋)) → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
3411, 33mpan 689 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋) → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
352, 12, 34mp3an23 1450 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
363, 35syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
3736oveq1d 7430 . . . . . . . . 9 (𝑦 ∈ ℝ → (((𝑦 · i)𝑆𝐴)𝑃𝐵) = ((𝑦𝑆(i𝑆𝐴))𝑃𝐵))
3813, 25dipcl 30516 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
3911, 12, 23, 38mp3an 1458 . . . . . . . . . . . 12 (𝐴𝑃𝐵) ∈ ℂ
40 mulass 11221 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
412, 39, 40mp3an23 1450 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
423, 41syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
43 eqid 2728 . . . . . . . . . . . 12 (normCV𝑈) = (normCV𝑈)
4413, 24, 14, 25, 10, 12, 23, 43ipasslem10 30643 . . . . . . . . . . 11 ((i𝑆𝐴)𝑃𝐵) = (i · (𝐴𝑃𝐵))
4544oveq2i 7426 . . . . . . . . . 10 (𝑦 · ((i𝑆𝐴)𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵)))
4642, 45eqtr4di 2786 . . . . . . . . 9 (𝑦 ∈ ℝ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · ((i𝑆𝐴)𝑃𝐵)))
4732, 37, 463eqtr4d 2778 . . . . . . . 8 (𝑦 ∈ ℝ → (((𝑦 · i)𝑆𝐴)𝑃𝐵) = ((𝑦 · i) · (𝐴𝑃𝐵)))
4829, 47oveqan12d 7434 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
4928, 48eqtrd 2768 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5013, 24, 14nvdir 30435 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5111, 50mpan 689 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5212, 51mp3an3 1447 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
539, 19, 52syl2an 595 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5453oveq1d 7430 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵))
55 adddir 11230 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5639, 55mp3an3 1447 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
579, 19, 56syl2an 595 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5849, 54, 573eqtr4d 2778 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)))
59 oveq1 7422 . . . . . . 7 (𝐶 = (𝑥 + (𝑦 · i)) → (𝐶𝑆𝐴) = ((𝑥 + (𝑦 · i))𝑆𝐴))
6059oveq1d 7430 . . . . . 6 (𝐶 = (𝑥 + (𝑦 · i)) → ((𝐶𝑆𝐴)𝑃𝐵) = (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵))
61 oveq1 7422 . . . . . 6 (𝐶 = (𝑥 + (𝑦 · i)) → (𝐶 · (𝐴𝑃𝐵)) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)))
6260, 61eqeq12d 2744 . . . . 5 (𝐶 = (𝑥 + (𝑦 · i)) → (((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)) ↔ (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵))))
6358, 62syl5ibrcom 246 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (𝑦 · i)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
648, 63sylbid 239 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (i · 𝑦)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
6564rexlimivv 3195 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐶 = (𝑥 + (i · 𝑦)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
661, 65syl 17 1 (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wrex 3066  cfv 6543  (class class class)co 7415  cc 11131  cr 11132  ici 11135   + caddc 11136   · cmul 11138  NrmCVeccnv 30388   +𝑣 cpv 30389  BaseSetcba 30390   ·𝑠OLD cns 30391  normCVcnmcv 30394  ·𝑖OLDcdip 30504  CPreHilOLDccphlo 30616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211  ax-addf 11212  ax-mulf 11213
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-om 7866  df-1st 7988  df-2nd 7989  df-supp 8161  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-2o 8482  df-er 8719  df-map 8841  df-ixp 8911  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fsupp 9381  df-fi 9429  df-sup 9460  df-inf 9461  df-oi 9528  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-q 12958  df-rp 13002  df-xneg 13119  df-xadd 13120  df-xmul 13121  df-ioo 13355  df-icc 13358  df-fz 13512  df-fzo 13655  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-clim 15459  df-sum 15660  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17398  df-topn 17399  df-0g 17417  df-gsum 17418  df-topgen 17419  df-pt 17420  df-prds 17423  df-xrs 17478  df-qtop 17483  df-imas 17484  df-xps 17486  df-mre 17560  df-mrc 17561  df-acs 17563  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-submnd 18735  df-mulg 19018  df-cntz 19262  df-cmn 19731  df-psmet 21265  df-xmet 21266  df-met 21267  df-bl 21268  df-mopn 21269  df-cnfld 21274  df-top 22790  df-topon 22807  df-topsp 22829  df-bases 22843  df-cld 22917  df-ntr 22918  df-cls 22919  df-cn 23125  df-cnp 23126  df-t1 23212  df-haus 23213  df-tx 23460  df-hmeo 23653  df-xms 24220  df-ms 24221  df-tms 24222  df-grpo 30297  df-gid 30298  df-ginv 30299  df-gdiv 30300  df-ablo 30349  df-vc 30363  df-nv 30396  df-va 30399  df-ba 30400  df-sm 30401  df-0v 30402  df-vs 30403  df-nmcv 30404  df-ims 30405  df-dip 30505  df-ph 30617
This theorem is referenced by:  ipassi  30645
  Copyright terms: Public domain W3C validator