MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem11 Structured version   Visualization version   GIF version

Theorem ipasslem11 30819
Description: Lemma for ipassi 30820. Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem11.a 𝐴𝑋
ipasslem11.b 𝐵𝑋
Assertion
Ref Expression
ipasslem11 (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem11
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11147 . 2 (𝐶 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐶 = (𝑥 + (i · 𝑦)))
2 ax-icn 11103 . . . . . . . 8 i ∈ ℂ
3 recn 11134 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
4 mulcom 11130 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) = (𝑦 · i))
52, 3, 4sylancr 587 . . . . . . 7 (𝑦 ∈ ℝ → (i · 𝑦) = (𝑦 · i))
65adantl 481 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) = (𝑦 · i))
76oveq2d 7385 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) = (𝑥 + (𝑦 · i)))
87eqeq2d 2740 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (i · 𝑦)) ↔ 𝐶 = (𝑥 + (𝑦 · i))))
9 recn 11134 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
10 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
1110phnvi 30795 . . . . . . . . . 10 𝑈 ∈ NrmCVec
12 ipasslem11.a . . . . . . . . . 10 𝐴𝑋
13 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
14 ip1i.4 . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
1513, 14nvscl 30605 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴𝑋) → (𝑥𝑆𝐴) ∈ 𝑋)
1611, 12, 15mp3an13 1454 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥𝑆𝐴) ∈ 𝑋)
179, 16syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥𝑆𝐴) ∈ 𝑋)
18 mulcl 11128 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ i ∈ ℂ) → (𝑦 · i) ∈ ℂ)
193, 2, 18sylancl 586 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 · i) ∈ ℂ)
2013, 14nvscl 30605 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋) → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
2111, 12, 20mp3an13 1454 . . . . . . . . 9 ((𝑦 · i) ∈ ℂ → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
2219, 21syl 17 . . . . . . . 8 (𝑦 ∈ ℝ → ((𝑦 · i)𝑆𝐴) ∈ 𝑋)
23 ipasslem11.b . . . . . . . . 9 𝐵𝑋
24 ip1i.2 . . . . . . . . . 10 𝐺 = ( +𝑣𝑈)
25 ip1i.7 . . . . . . . . . 10 𝑃 = (·𝑖OLD𝑈)
2613, 24, 14, 25, 10ipdiri 30809 . . . . . . . . 9 (((𝑥𝑆𝐴) ∈ 𝑋 ∧ ((𝑦 · i)𝑆𝐴) ∈ 𝑋𝐵𝑋) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2723, 26mp3an3 1452 . . . . . . . 8 (((𝑥𝑆𝐴) ∈ 𝑋 ∧ ((𝑦 · i)𝑆𝐴) ∈ 𝑋) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2817, 22, 27syl2an 596 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)))
2913, 24, 14, 25, 10, 12, 23ipasslem9 30817 . . . . . . . 8 (𝑥 ∈ ℝ → ((𝑥𝑆𝐴)𝑃𝐵) = (𝑥 · (𝐴𝑃𝐵)))
3013, 14nvscl 30605 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐴𝑋) → (i𝑆𝐴) ∈ 𝑋)
3111, 2, 12, 30mp3an 1463 . . . . . . . . . 10 (i𝑆𝐴) ∈ 𝑋
3213, 24, 14, 25, 10, 31, 23ipasslem9 30817 . . . . . . . . 9 (𝑦 ∈ ℝ → ((𝑦𝑆(i𝑆𝐴))𝑃𝐵) = (𝑦 · ((i𝑆𝐴)𝑃𝐵)))
3313, 14nvsass 30607 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋)) → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
3411, 33mpan 690 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴𝑋) → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
352, 12, 34mp3an23 1455 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
363, 35syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((𝑦 · i)𝑆𝐴) = (𝑦𝑆(i𝑆𝐴)))
3736oveq1d 7384 . . . . . . . . 9 (𝑦 ∈ ℝ → (((𝑦 · i)𝑆𝐴)𝑃𝐵) = ((𝑦𝑆(i𝑆𝐴))𝑃𝐵))
3813, 25dipcl 30691 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
3911, 12, 23, 38mp3an 1463 . . . . . . . . . . . 12 (𝐴𝑃𝐵) ∈ ℂ
40 mulass 11132 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
412, 39, 40mp3an23 1455 . . . . . . . . . . 11 (𝑦 ∈ ℂ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
423, 41syl 17 . . . . . . . . . 10 (𝑦 ∈ ℝ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵))))
43 eqid 2729 . . . . . . . . . . . 12 (normCV𝑈) = (normCV𝑈)
4413, 24, 14, 25, 10, 12, 23, 43ipasslem10 30818 . . . . . . . . . . 11 ((i𝑆𝐴)𝑃𝐵) = (i · (𝐴𝑃𝐵))
4544oveq2i 7380 . . . . . . . . . 10 (𝑦 · ((i𝑆𝐴)𝑃𝐵)) = (𝑦 · (i · (𝐴𝑃𝐵)))
4642, 45eqtr4di 2782 . . . . . . . . 9 (𝑦 ∈ ℝ → ((𝑦 · i) · (𝐴𝑃𝐵)) = (𝑦 · ((i𝑆𝐴)𝑃𝐵)))
4732, 37, 463eqtr4d 2774 . . . . . . . 8 (𝑦 ∈ ℝ → (((𝑦 · i)𝑆𝐴)𝑃𝐵) = ((𝑦 · i) · (𝐴𝑃𝐵)))
4829, 47oveqan12d 7388 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝑃𝐵) + (((𝑦 · i)𝑆𝐴)𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
4928, 48eqtrd 2764 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5013, 24, 14nvdir 30610 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋)) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5111, 50mpan 690 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ 𝐴𝑋) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5212, 51mp3an3 1452 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
539, 19, 52syl2an 596 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (𝑦 · i))𝑆𝐴) = ((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴)))
5453oveq1d 7384 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = (((𝑥𝑆𝐴)𝐺((𝑦 · i)𝑆𝐴))𝑃𝐵))
55 adddir 11141 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5639, 55mp3an3 1452 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (𝑦 · i) ∈ ℂ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
579, 19, 56syl2an 596 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)) = ((𝑥 · (𝐴𝑃𝐵)) + ((𝑦 · i) · (𝐴𝑃𝐵))))
5849, 54, 573eqtr4d 2774 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)))
59 oveq1 7376 . . . . . . 7 (𝐶 = (𝑥 + (𝑦 · i)) → (𝐶𝑆𝐴) = ((𝑥 + (𝑦 · i))𝑆𝐴))
6059oveq1d 7384 . . . . . 6 (𝐶 = (𝑥 + (𝑦 · i)) → ((𝐶𝑆𝐴)𝑃𝐵) = (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵))
61 oveq1 7376 . . . . . 6 (𝐶 = (𝑥 + (𝑦 · i)) → (𝐶 · (𝐴𝑃𝐵)) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵)))
6260, 61eqeq12d 2745 . . . . 5 (𝐶 = (𝑥 + (𝑦 · i)) → (((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)) ↔ (((𝑥 + (𝑦 · i))𝑆𝐴)𝑃𝐵) = ((𝑥 + (𝑦 · i)) · (𝐴𝑃𝐵))))
6358, 62syl5ibrcom 247 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (𝑦 · i)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
648, 63sylbid 240 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐶 = (𝑥 + (i · 𝑦)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))))
6564rexlimivv 3177 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐶 = (𝑥 + (i · 𝑦)) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
661, 65syl 17 1 (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  ici 11046   + caddc 11047   · cmul 11049  NrmCVeccnv 30563   +𝑣 cpv 30564  BaseSetcba 30565   ·𝑠OLD cns 30566  normCVcnmcv 30569  ·𝑖OLDcdip 30679  CPreHilOLDccphlo 30791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-cn 23147  df-cnp 23148  df-t1 23234  df-haus 23235  df-tx 23482  df-hmeo 23675  df-xms 24241  df-ms 24242  df-tms 24243  df-grpo 30472  df-gid 30473  df-ginv 30474  df-gdiv 30475  df-ablo 30524  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-vs 30578  df-nmcv 30579  df-ims 30580  df-dip 30680  df-ph 30792
This theorem is referenced by:  ipassi  30820
  Copyright terms: Public domain W3C validator