Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-addlid Structured version   Visualization version   GIF version

Theorem sn-addlid 42411
Description: addlid 11442 without ax-mulcom 11217. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
sn-addlid (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)

Proof of Theorem sn-addlid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11256 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 0cnd 11252 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 0 ∈ ℂ)
3 simp2l 1198 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℝ)
43recnd 11287 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℂ)
5 ax-icn 11212 . . . . . . . . 9 i ∈ ℂ
65a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → i ∈ ℂ)
7 simp2r 1199 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℝ)
87recnd 11287 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℂ)
96, 8mulcld 11279 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · 𝑦) ∈ ℂ)
102, 4, 9addassd 11281 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((0 + 𝑥) + (i · 𝑦)) = (0 + (𝑥 + (i · 𝑦))))
11 readdlid 42410 . . . . . . . . 9 (𝑥 ∈ ℝ → (0 + 𝑥) = 𝑥)
1211adantr 480 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 + 𝑥) = 𝑥)
13123ad2ant2 1133 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + 𝑥) = 𝑥)
1413oveq1d 7446 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((0 + 𝑥) + (i · 𝑦)) = (𝑥 + (i · 𝑦)))
1510, 14eqtr3d 2777 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦)))
16 simp3 1137 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐴 = (𝑥 + (i · 𝑦)))
1716oveq2d 7447 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + 𝐴) = (0 + (𝑥 + (i · 𝑦))))
1815, 17, 163eqtr4d 2785 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + 𝐴) = 𝐴)
19183exp 1118 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 + 𝐴) = 𝐴)))
2019rexlimdvv 3210 . 2 (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 + 𝐴) = 𝐴))
211, 20mpd 15 1 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  ici 11155   + caddc 11156   · cmul 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-resub 42373
This theorem is referenced by:  sn-it0e0  42422  sn-negex12  42423  sn-addcand  42426  sn-subeu  42433  sn-0tie0  42446  cnreeu  42477
  Copyright terms: Public domain W3C validator