| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-addlid | Structured version Visualization version GIF version | ||
| Description: addlid 11303 without ax-mulcom 11077. (Contributed by SN, 23-Jan-2024.) |
| Ref | Expression |
|---|---|
| sn-addlid | ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 11116 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
| 2 | 0cnd 11112 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 0 ∈ ℂ) | |
| 3 | simp2l 1200 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℝ) | |
| 4 | 3 | recnd 11147 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℂ) |
| 5 | ax-icn 11072 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
| 6 | 5 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → i ∈ ℂ) |
| 7 | simp2r 1201 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℝ) | |
| 8 | 7 | recnd 11147 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℂ) |
| 9 | 6, 8 | mulcld 11139 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · 𝑦) ∈ ℂ) |
| 10 | 2, 4, 9 | addassd 11141 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((0 + 𝑥) + (i · 𝑦)) = (0 + (𝑥 + (i · 𝑦)))) |
| 11 | readdlid 42521 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → (0 + 𝑥) = 𝑥) | |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 + 𝑥) = 𝑥) |
| 13 | 12 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + 𝑥) = 𝑥) |
| 14 | 13 | oveq1d 7367 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((0 + 𝑥) + (i · 𝑦)) = (𝑥 + (i · 𝑦))) |
| 15 | 10, 14 | eqtr3d 2770 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦))) |
| 16 | simp3 1138 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐴 = (𝑥 + (i · 𝑦))) | |
| 17 | 16 | oveq2d 7368 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + 𝐴) = (0 + (𝑥 + (i · 𝑦)))) |
| 18 | 15, 17, 16 | 3eqtr4d 2778 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + 𝐴) = 𝐴) |
| 19 | 18 | 3exp 1119 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 + 𝐴) = 𝐴))) |
| 20 | 19 | rexlimdvv 3189 | . 2 ⊢ (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 + 𝐴) = 𝐴)) |
| 21 | 1, 20 | mpd 15 | 1 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 ici 11015 + caddc 11016 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-resub 42484 |
| This theorem is referenced by: sn-it0e0 42534 sn-negex12 42535 sn-addcand 42538 sn-subeu 42545 sn-0tie0 42569 cnreeu 42608 |
| Copyright terms: Public domain | W3C validator |