Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-addlid Structured version   Visualization version   GIF version

Theorem sn-addlid 42380
Description: addlid 11473 without ax-mulcom 11248. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
sn-addlid (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)

Proof of Theorem sn-addlid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11287 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 0cnd 11283 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 0 ∈ ℂ)
3 simp2l 1199 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℝ)
43recnd 11318 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℂ)
5 ax-icn 11243 . . . . . . . . 9 i ∈ ℂ
65a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → i ∈ ℂ)
7 simp2r 1200 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℝ)
87recnd 11318 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℂ)
96, 8mulcld 11310 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · 𝑦) ∈ ℂ)
102, 4, 9addassd 11312 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((0 + 𝑥) + (i · 𝑦)) = (0 + (𝑥 + (i · 𝑦))))
11 readdlid 42379 . . . . . . . . 9 (𝑥 ∈ ℝ → (0 + 𝑥) = 𝑥)
1211adantr 480 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 + 𝑥) = 𝑥)
13123ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + 𝑥) = 𝑥)
1413oveq1d 7463 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((0 + 𝑥) + (i · 𝑦)) = (𝑥 + (i · 𝑦)))
1510, 14eqtr3d 2782 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦)))
16 simp3 1138 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐴 = (𝑥 + (i · 𝑦)))
1716oveq2d 7464 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + 𝐴) = (0 + (𝑥 + (i · 𝑦))))
1815, 17, 163eqtr4d 2790 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + 𝐴) = 𝐴)
19183exp 1119 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 + 𝐴) = 𝐴)))
2019rexlimdvv 3218 . 2 (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 + 𝐴) = 𝐴))
211, 20mpd 15 1 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  ici 11186   + caddc 11187   · cmul 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-resub 42342
This theorem is referenced by:  sn-it0e0  42391  sn-negex12  42392  sn-addcand  42395  sn-subeu  42402  sn-0tie0  42415  cnreeu  42446
  Copyright terms: Public domain W3C validator