Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-it0e0 Structured version   Visualization version   GIF version

Theorem sn-it0e0 42458
Description: Proof of it0e0 12464 without ax-mulcom 11193. Informally, a real number times 0 is 0, and 𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 11202 and renegid2 42456. (Contributed by SN, 30-Apr-2024.)
Assertion
Ref Expression
sn-it0e0 (i · 0) = 0

Proof of Theorem sn-it0e0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11227 . 2 0 ∈ ℂ
2 cnre 11232 . 2 (0 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 0 = (𝑎 + (i · 𝑏)))
3 oveq2 7413 . . . 4 (0 = (𝑎 + (i · 𝑏)) → ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))))
4 ax-icn 11188 . . . . . . . . . 10 i ∈ ℂ
54a1i 11 . . . . . . . . 9 (𝑏 ∈ ℝ → i ∈ ℂ)
6 recn 11219 . . . . . . . . 9 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
7 0cnd 11228 . . . . . . . . 9 (𝑏 ∈ ℝ → 0 ∈ ℂ)
85, 6, 7mulassd 11258 . . . . . . . 8 (𝑏 ∈ ℝ → ((i · 𝑏) · 0) = (i · (𝑏 · 0)))
9 remul01 42450 . . . . . . . . 9 (𝑏 ∈ ℝ → (𝑏 · 0) = 0)
109oveq2d 7421 . . . . . . . 8 (𝑏 ∈ ℝ → (i · (𝑏 · 0)) = (i · 0))
118, 10eqtrd 2770 . . . . . . 7 (𝑏 ∈ ℝ → ((i · 𝑏) · 0) = (i · 0))
1211ad2antlr 727 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((i · 𝑏) · 0) = (i · 0))
13 rernegcl 42414 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (0 − 𝑎) ∈ ℝ)
1413recnd 11263 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → (0 − 𝑎) ∈ ℂ)
1514adantr 480 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (0 − 𝑎) ∈ ℂ)
16 recn 11219 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
1716adantr 480 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → 𝑎 ∈ ℂ)
185, 6mulcld 11255 . . . . . . . . . . . . 13 (𝑏 ∈ ℝ → (i · 𝑏) ∈ ℂ)
1918adantl 481 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (i · 𝑏) ∈ ℂ)
2015, 17, 19addassd 11257 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 𝑎) + (i · 𝑏)) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))))
21 renegid2 42456 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → ((0 − 𝑎) + 𝑎) = 0)
2221oveq1d 7420 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (((0 − 𝑎) + 𝑎) + (i · 𝑏)) = (0 + (i · 𝑏)))
23 sn-addlid 42447 . . . . . . . . . . . . 13 ((i · 𝑏) ∈ ℂ → (0 + (i · 𝑏)) = (i · 𝑏))
2418, 23syl 17 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (0 + (i · 𝑏)) = (i · 𝑏))
2522, 24sylan9eq 2790 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 𝑎) + (i · 𝑏)) = (i · 𝑏))
2620, 25eqtr3d 2772 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((0 − 𝑎) + (𝑎 + (i · 𝑏))) = (i · 𝑏))
2726eqeq2d 2746 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))) ↔ ((0 − 𝑎) + 0) = (i · 𝑏)))
2827biimpa 476 . . . . . . . 8 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((0 − 𝑎) + 0) = (i · 𝑏))
2928oveq1d 7420 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → (((0 − 𝑎) + 0) · 0) = ((i · 𝑏) · 0))
30 elre0re 42305 . . . . . . . . . 10 (𝑎 ∈ ℝ → 0 ∈ ℝ)
3113, 30readdcld 11264 . . . . . . . . 9 (𝑎 ∈ ℝ → ((0 − 𝑎) + 0) ∈ ℝ)
3231ad2antrr 726 . . . . . . . 8 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((0 − 𝑎) + 0) ∈ ℝ)
33 remul01 42450 . . . . . . . 8 (((0 − 𝑎) + 0) ∈ ℝ → (((0 − 𝑎) + 0) · 0) = 0)
3432, 33syl 17 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → (((0 − 𝑎) + 0) · 0) = 0)
3529, 34eqtr3d 2772 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((i · 𝑏) · 0) = 0)
3612, 35eqtr3d 2772 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → (i · 0) = 0)
3736ex 412 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))) → (i · 0) = 0))
383, 37syl5 34 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (0 = (𝑎 + (i · 𝑏)) → (i · 0) = 0))
3938rexlimivv 3186 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 0 = (𝑎 + (i · 𝑏)) → (i · 0) = 0)
401, 2, 39mp2b 10 1 (i · 0) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  wrex 3060  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  ici 11131   + caddc 11132   · cmul 11134   cresub 42408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-2 12303  df-3 12304  df-resub 42409
This theorem is referenced by:  sn-negex12  42459  ipiiie0  42480  sn-itrere  42511  cnreeu  42513
  Copyright terms: Public domain W3C validator