Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-it0e0 Structured version   Visualization version   GIF version

Theorem sn-it0e0 42586
Description: Proof of it0e0 12355 without ax-mulcom 11081. Informally, a real number times 0 is 0, and 𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 11090 and renegid2 42584. (Contributed by SN, 30-Apr-2024.)
Assertion
Ref Expression
sn-it0e0 (i · 0) = 0

Proof of Theorem sn-it0e0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11115 . 2 0 ∈ ℂ
2 cnre 11120 . 2 (0 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 0 = (𝑎 + (i · 𝑏)))
3 oveq2 7363 . . . 4 (0 = (𝑎 + (i · 𝑏)) → ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))))
4 ax-icn 11076 . . . . . . . . . 10 i ∈ ℂ
54a1i 11 . . . . . . . . 9 (𝑏 ∈ ℝ → i ∈ ℂ)
6 recn 11107 . . . . . . . . 9 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
7 0cnd 11116 . . . . . . . . 9 (𝑏 ∈ ℝ → 0 ∈ ℂ)
85, 6, 7mulassd 11146 . . . . . . . 8 (𝑏 ∈ ℝ → ((i · 𝑏) · 0) = (i · (𝑏 · 0)))
9 remul01 42577 . . . . . . . . 9 (𝑏 ∈ ℝ → (𝑏 · 0) = 0)
109oveq2d 7371 . . . . . . . 8 (𝑏 ∈ ℝ → (i · (𝑏 · 0)) = (i · 0))
118, 10eqtrd 2768 . . . . . . 7 (𝑏 ∈ ℝ → ((i · 𝑏) · 0) = (i · 0))
1211ad2antlr 727 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((i · 𝑏) · 0) = (i · 0))
13 rernegcl 42541 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (0 − 𝑎) ∈ ℝ)
1413recnd 11151 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → (0 − 𝑎) ∈ ℂ)
1514adantr 480 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (0 − 𝑎) ∈ ℂ)
16 recn 11107 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
1716adantr 480 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → 𝑎 ∈ ℂ)
185, 6mulcld 11143 . . . . . . . . . . . . 13 (𝑏 ∈ ℝ → (i · 𝑏) ∈ ℂ)
1918adantl 481 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (i · 𝑏) ∈ ℂ)
2015, 17, 19addassd 11145 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 𝑎) + (i · 𝑏)) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))))
21 renegid2 42584 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → ((0 − 𝑎) + 𝑎) = 0)
2221oveq1d 7370 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (((0 − 𝑎) + 𝑎) + (i · 𝑏)) = (0 + (i · 𝑏)))
23 sn-addlid 42574 . . . . . . . . . . . . 13 ((i · 𝑏) ∈ ℂ → (0 + (i · 𝑏)) = (i · 𝑏))
2418, 23syl 17 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (0 + (i · 𝑏)) = (i · 𝑏))
2522, 24sylan9eq 2788 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 𝑎) + (i · 𝑏)) = (i · 𝑏))
2620, 25eqtr3d 2770 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((0 − 𝑎) + (𝑎 + (i · 𝑏))) = (i · 𝑏))
2726eqeq2d 2744 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))) ↔ ((0 − 𝑎) + 0) = (i · 𝑏)))
2827biimpa 476 . . . . . . . 8 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((0 − 𝑎) + 0) = (i · 𝑏))
2928oveq1d 7370 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → (((0 − 𝑎) + 0) · 0) = ((i · 𝑏) · 0))
30 elre0re 42424 . . . . . . . . . 10 (𝑎 ∈ ℝ → 0 ∈ ℝ)
3113, 30readdcld 11152 . . . . . . . . 9 (𝑎 ∈ ℝ → ((0 − 𝑎) + 0) ∈ ℝ)
3231ad2antrr 726 . . . . . . . 8 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((0 − 𝑎) + 0) ∈ ℝ)
33 remul01 42577 . . . . . . . 8 (((0 − 𝑎) + 0) ∈ ℝ → (((0 − 𝑎) + 0) · 0) = 0)
3432, 33syl 17 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → (((0 − 𝑎) + 0) · 0) = 0)
3529, 34eqtr3d 2770 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((i · 𝑏) · 0) = 0)
3612, 35eqtr3d 2770 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → (i · 0) = 0)
3736ex 412 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))) → (i · 0) = 0))
383, 37syl5 34 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (0 = (𝑎 + (i · 𝑏)) → (i · 0) = 0))
3938rexlimivv 3175 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 0 = (𝑎 + (i · 𝑏)) → (i · 0) = 0)
401, 2, 39mp2b 10 1 (i · 0) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  wrex 3057  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  ici 11019   + caddc 11020   · cmul 11022   cresub 42535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-ltxr 11162  df-2 12199  df-3 12200  df-resub 42536
This theorem is referenced by:  sn-negex12  42587  ipiiie0  42608  sn-itrere  42658  cnreeu  42660
  Copyright terms: Public domain W3C validator