Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-it0e0 Structured version   Visualization version   GIF version

Theorem sn-it0e0 42409
Description: Proof of it0e0 12366 without ax-mulcom 11092. Informally, a real number times 0 is 0, and 𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 11101 and renegid2 42407. (Contributed by SN, 30-Apr-2024.)
Assertion
Ref Expression
sn-it0e0 (i · 0) = 0

Proof of Theorem sn-it0e0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 11126 . 2 0 ∈ ℂ
2 cnre 11131 . 2 (0 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 0 = (𝑎 + (i · 𝑏)))
3 oveq2 7361 . . . 4 (0 = (𝑎 + (i · 𝑏)) → ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))))
4 ax-icn 11087 . . . . . . . . . 10 i ∈ ℂ
54a1i 11 . . . . . . . . 9 (𝑏 ∈ ℝ → i ∈ ℂ)
6 recn 11118 . . . . . . . . 9 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
7 0cnd 11127 . . . . . . . . 9 (𝑏 ∈ ℝ → 0 ∈ ℂ)
85, 6, 7mulassd 11157 . . . . . . . 8 (𝑏 ∈ ℝ → ((i · 𝑏) · 0) = (i · (𝑏 · 0)))
9 remul01 42400 . . . . . . . . 9 (𝑏 ∈ ℝ → (𝑏 · 0) = 0)
109oveq2d 7369 . . . . . . . 8 (𝑏 ∈ ℝ → (i · (𝑏 · 0)) = (i · 0))
118, 10eqtrd 2764 . . . . . . 7 (𝑏 ∈ ℝ → ((i · 𝑏) · 0) = (i · 0))
1211ad2antlr 727 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((i · 𝑏) · 0) = (i · 0))
13 rernegcl 42364 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (0 − 𝑎) ∈ ℝ)
1413recnd 11162 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → (0 − 𝑎) ∈ ℂ)
1514adantr 480 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (0 − 𝑎) ∈ ℂ)
16 recn 11118 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
1716adantr 480 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → 𝑎 ∈ ℂ)
185, 6mulcld 11154 . . . . . . . . . . . . 13 (𝑏 ∈ ℝ → (i · 𝑏) ∈ ℂ)
1918adantl 481 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (i · 𝑏) ∈ ℂ)
2015, 17, 19addassd 11156 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 𝑎) + (i · 𝑏)) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))))
21 renegid2 42407 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → ((0 − 𝑎) + 𝑎) = 0)
2221oveq1d 7368 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (((0 − 𝑎) + 𝑎) + (i · 𝑏)) = (0 + (i · 𝑏)))
23 sn-addlid 42397 . . . . . . . . . . . . 13 ((i · 𝑏) ∈ ℂ → (0 + (i · 𝑏)) = (i · 𝑏))
2418, 23syl 17 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (0 + (i · 𝑏)) = (i · 𝑏))
2522, 24sylan9eq 2784 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 𝑎) + (i · 𝑏)) = (i · 𝑏))
2620, 25eqtr3d 2766 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((0 − 𝑎) + (𝑎 + (i · 𝑏))) = (i · 𝑏))
2726eqeq2d 2740 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))) ↔ ((0 − 𝑎) + 0) = (i · 𝑏)))
2827biimpa 476 . . . . . . . 8 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((0 − 𝑎) + 0) = (i · 𝑏))
2928oveq1d 7368 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → (((0 − 𝑎) + 0) · 0) = ((i · 𝑏) · 0))
30 elre0re 42247 . . . . . . . . . 10 (𝑎 ∈ ℝ → 0 ∈ ℝ)
3113, 30readdcld 11163 . . . . . . . . 9 (𝑎 ∈ ℝ → ((0 − 𝑎) + 0) ∈ ℝ)
3231ad2antrr 726 . . . . . . . 8 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((0 − 𝑎) + 0) ∈ ℝ)
33 remul01 42400 . . . . . . . 8 (((0 − 𝑎) + 0) ∈ ℝ → (((0 − 𝑎) + 0) · 0) = 0)
3432, 33syl 17 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → (((0 − 𝑎) + 0) · 0) = 0)
3529, 34eqtr3d 2766 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((i · 𝑏) · 0) = 0)
3612, 35eqtr3d 2766 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → (i · 0) = 0)
3736ex 412 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))) → (i · 0) = 0))
383, 37syl5 34 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (0 = (𝑎 + (i · 𝑏)) → (i · 0) = 0))
3938rexlimivv 3171 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 0 = (𝑎 + (i · 𝑏)) → (i · 0) = 0)
401, 2, 39mp2b 10 1 (i · 0) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  ici 11030   + caddc 11031   · cmul 11033   cresub 42358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173  df-2 12210  df-3 12211  df-resub 42359
This theorem is referenced by:  sn-negex12  42410  ipiiie0  42431  sn-itrere  42481  cnreeu  42483
  Copyright terms: Public domain W3C validator