Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-it0e0 Structured version   Visualization version   GIF version

Theorem sn-it0e0 40397
Description: Proof of it0e0 12195 without ax-mulcom 10935. Informally, a real number times 0 is 0, and 𝑟 ∈ ℝ𝑟 = i · 𝑠 by ax-cnre 10944 and renegid2 40396. (Contributed by SN, 30-Apr-2024.)
Assertion
Ref Expression
sn-it0e0 (i · 0) = 0

Proof of Theorem sn-it0e0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 10967 . 2 0 ∈ ℂ
2 cnre 10972 . 2 (0 ∈ ℂ → ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 0 = (𝑎 + (i · 𝑏)))
3 oveq2 7283 . . . 4 (0 = (𝑎 + (i · 𝑏)) → ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))))
4 ax-icn 10930 . . . . . . . . . 10 i ∈ ℂ
54a1i 11 . . . . . . . . 9 (𝑏 ∈ ℝ → i ∈ ℂ)
6 recn 10961 . . . . . . . . 9 (𝑏 ∈ ℝ → 𝑏 ∈ ℂ)
7 0cnd 10968 . . . . . . . . 9 (𝑏 ∈ ℝ → 0 ∈ ℂ)
85, 6, 7mulassd 10998 . . . . . . . 8 (𝑏 ∈ ℝ → ((i · 𝑏) · 0) = (i · (𝑏 · 0)))
9 remul01 40390 . . . . . . . . 9 (𝑏 ∈ ℝ → (𝑏 · 0) = 0)
109oveq2d 7291 . . . . . . . 8 (𝑏 ∈ ℝ → (i · (𝑏 · 0)) = (i · 0))
118, 10eqtrd 2778 . . . . . . 7 (𝑏 ∈ ℝ → ((i · 𝑏) · 0) = (i · 0))
1211ad2antlr 724 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((i · 𝑏) · 0) = (i · 0))
13 rernegcl 40354 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ → (0 − 𝑎) ∈ ℝ)
1413recnd 11003 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → (0 − 𝑎) ∈ ℂ)
1514adantr 481 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (0 − 𝑎) ∈ ℂ)
16 recn 10961 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
1716adantr 481 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → 𝑎 ∈ ℂ)
185, 6mulcld 10995 . . . . . . . . . . . . 13 (𝑏 ∈ ℝ → (i · 𝑏) ∈ ℂ)
1918adantl 482 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (i · 𝑏) ∈ ℂ)
2015, 17, 19addassd 10997 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 𝑎) + (i · 𝑏)) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))))
21 renegid2 40396 . . . . . . . . . . . . 13 (𝑎 ∈ ℝ → ((0 − 𝑎) + 𝑎) = 0)
2221oveq1d 7290 . . . . . . . . . . . 12 (𝑎 ∈ ℝ → (((0 − 𝑎) + 𝑎) + (i · 𝑏)) = (0 + (i · 𝑏)))
23 sn-addid2 40387 . . . . . . . . . . . . 13 ((i · 𝑏) ∈ ℂ → (0 + (i · 𝑏)) = (i · 𝑏))
2418, 23syl 17 . . . . . . . . . . . 12 (𝑏 ∈ ℝ → (0 + (i · 𝑏)) = (i · 𝑏))
2522, 24sylan9eq 2798 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 𝑎) + (i · 𝑏)) = (i · 𝑏))
2620, 25eqtr3d 2780 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((0 − 𝑎) + (𝑎 + (i · 𝑏))) = (i · 𝑏))
2726eqeq2d 2749 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))) ↔ ((0 − 𝑎) + 0) = (i · 𝑏)))
2827biimpa 477 . . . . . . . 8 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((0 − 𝑎) + 0) = (i · 𝑏))
2928oveq1d 7290 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → (((0 − 𝑎) + 0) · 0) = ((i · 𝑏) · 0))
30 elre0re 40291 . . . . . . . . . 10 (𝑎 ∈ ℝ → 0 ∈ ℝ)
3113, 30readdcld 11004 . . . . . . . . 9 (𝑎 ∈ ℝ → ((0 − 𝑎) + 0) ∈ ℝ)
3231ad2antrr 723 . . . . . . . 8 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((0 − 𝑎) + 0) ∈ ℝ)
33 remul01 40390 . . . . . . . 8 (((0 − 𝑎) + 0) ∈ ℝ → (((0 − 𝑎) + 0) · 0) = 0)
3432, 33syl 17 . . . . . . 7 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → (((0 − 𝑎) + 0) · 0) = 0)
3529, 34eqtr3d 2780 . . . . . 6 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → ((i · 𝑏) · 0) = 0)
3612, 35eqtr3d 2780 . . . . 5 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ ((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏)))) → (i · 0) = 0)
3736ex 413 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (((0 − 𝑎) + 0) = ((0 − 𝑎) + (𝑎 + (i · 𝑏))) → (i · 0) = 0))
383, 37syl5 34 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (0 = (𝑎 + (i · 𝑏)) → (i · 0) = 0))
3938rexlimivv 3221 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 0 = (𝑎 + (i · 𝑏)) → (i · 0) = 0)
401, 2, 39mp2b 10 1 (i · 0) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  wrex 3065  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  ici 10873   + caddc 10874   · cmul 10876   cresub 40348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-2 12036  df-3 12037  df-resub 40349
This theorem is referenced by:  sn-negex12  40398  ipiiie0  40419  itrere  40436  cnreeu  40438
  Copyright terms: Public domain W3C validator