![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulrid | Structured version Visualization version GIF version |
Description: The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mulrid | ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 11287 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
2 | recn 11274 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
3 | ax-icn 11243 | . . . . . . 7 ⊢ i ∈ ℂ | |
4 | recn 11274 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
5 | mulcl 11268 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ) | |
6 | 3, 4, 5 | sylancr 586 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ) |
7 | ax-1cn 11242 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
8 | adddir 11281 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1))) | |
9 | 7, 8 | mp3an3 1450 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1))) |
10 | 2, 6, 9 | syl2an 595 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1))) |
11 | ax-1rid 11254 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (𝑥 · 1) = 𝑥) | |
12 | mulass 11272 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝑦) · 1) = (i · (𝑦 · 1))) | |
13 | 3, 7, 12 | mp3an13 1452 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → ((i · 𝑦) · 1) = (i · (𝑦 · 1))) |
14 | 4, 13 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · (𝑦 · 1))) |
15 | ax-1rid 11254 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦) | |
16 | 15 | oveq2d 7464 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (i · (𝑦 · 1)) = (i · 𝑦)) |
17 | 14, 16 | eqtrd 2780 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · 𝑦)) |
18 | 11, 17 | oveqan12d 7467 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 · 1) + ((i · 𝑦) · 1)) = (𝑥 + (i · 𝑦))) |
19 | 10, 18 | eqtrd 2780 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦))) |
20 | oveq1 7455 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = ((𝑥 + (i · 𝑦)) · 1)) | |
21 | id 22 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦))) | |
22 | 20, 21 | eqeq12d 2756 | . . . 4 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((𝐴 · 1) = 𝐴 ↔ ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦)))) |
23 | 19, 22 | syl5ibrcom 247 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴)) |
24 | 23 | rexlimivv 3207 | . 2 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴) |
25 | 1, 24 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 (class class class)co 7448 ℂcc 11182 ℝcr 11183 1c1 11185 ici 11186 + caddc 11187 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-mulcom 11248 ax-mulass 11250 ax-distr 11251 ax-1rid 11254 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: mullid 11289 mulridi 11294 mulridd 11307 muleqadd 11934 divdiv1 12005 conjmul 12011 expmul 14158 binom21 14268 binom2sub1 14270 sq01 14274 bernneq 14278 hashiun 15870 fprodcvg 15978 prodmolem2a 15982 efexp 16149 cncrng 21424 cncrngOLD 21425 cnfld1 21429 cnfld1OLD 21430 0dgr 26304 ecxp 26733 dvcxp1 26800 dvcncxp1 26803 efrlim 27030 efrlimOLD 27031 lgsdilem2 27395 axcontlem7 29003 ipasslem2 30864 addltmulALT 32478 0dp2dp 32873 zrhnm 33915 2even 47962 |
Copyright terms: Public domain | W3C validator |