MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulrid Structured version   Visualization version   GIF version

Theorem mulrid 11107
Description: The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mulrid (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)

Proof of Theorem mulrid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11106 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 recn 11093 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3 ax-icn 11062 . . . . . . 7 i ∈ ℂ
4 recn 11093 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
5 mulcl 11087 . . . . . . 7 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
63, 4, 5sylancr 587 . . . . . 6 (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ)
7 ax-1cn 11061 . . . . . . 7 1 ∈ ℂ
8 adddir 11100 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
97, 8mp3an3 1452 . . . . . 6 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
102, 6, 9syl2an 596 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1)))
11 ax-1rid 11073 . . . . . 6 (𝑥 ∈ ℝ → (𝑥 · 1) = 𝑥)
12 mulass 11091 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
133, 7, 12mp3an13 1454 . . . . . . . 8 (𝑦 ∈ ℂ → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
144, 13syl 17 . . . . . . 7 (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · (𝑦 · 1)))
15 ax-1rid 11073 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦)
1615oveq2d 7362 . . . . . . 7 (𝑦 ∈ ℝ → (i · (𝑦 · 1)) = (i · 𝑦))
1714, 16eqtrd 2766 . . . . . 6 (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · 𝑦))
1811, 17oveqan12d 7365 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 · 1) + ((i · 𝑦) · 1)) = (𝑥 + (i · 𝑦)))
1910, 18eqtrd 2766 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦)))
20 oveq1 7353 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = ((𝑥 + (i · 𝑦)) · 1))
21 id 22 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦)))
2220, 21eqeq12d 2747 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((𝐴 · 1) = 𝐴 ↔ ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦))))
2319, 22syl5ibrcom 247 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴))
2423rexlimivv 3174 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴)
251, 24syl 17 1 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  (class class class)co 7346  cc 11001  cr 11002  1c1 11004  ici 11005   + caddc 11006   · cmul 11008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-mulcl 11065  ax-mulcom 11067  ax-mulass 11069  ax-distr 11070  ax-1rid 11073  ax-cnre 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by:  mullid  11108  mulridi  11113  mulridd  11126  muleqadd  11758  divdiv1  11829  conjmul  11835  expmul  14011  binom21  14123  binom2sub1  14125  sq01  14129  bernneq  14133  hashiun  15726  fprodcvg  15834  prodmolem2a  15838  efexp  16007  cncrng  21323  cncrngOLD  21324  cnfld1  21328  cnfld1OLD  21329  0dgr  26175  ecxp  26607  dvcxp1  26674  dvcncxp1  26677  efrlim  26904  efrlimOLD  26905  lgsdilem2  27269  axcontlem7  28946  ipasslem2  30807  addltmulALT  32421  0dp2dp  32884  zrhnm  33975  2even  48269
  Copyright terms: Public domain W3C validator