![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulrid | Structured version Visualization version GIF version |
Description: The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mulrid | ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 11249 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
2 | recn 11236 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
3 | ax-icn 11205 | . . . . . . 7 ⊢ i ∈ ℂ | |
4 | recn 11236 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
5 | mulcl 11230 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ) | |
6 | 3, 4, 5 | sylancr 585 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ) |
7 | ax-1cn 11204 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
8 | adddir 11243 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1))) | |
9 | 7, 8 | mp3an3 1446 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1))) |
10 | 2, 6, 9 | syl2an 594 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = ((𝑥 · 1) + ((i · 𝑦) · 1))) |
11 | ax-1rid 11216 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (𝑥 · 1) = 𝑥) | |
12 | mulass 11234 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝑦) · 1) = (i · (𝑦 · 1))) | |
13 | 3, 7, 12 | mp3an13 1448 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ → ((i · 𝑦) · 1) = (i · (𝑦 · 1))) |
14 | 4, 13 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · (𝑦 · 1))) |
15 | ax-1rid 11216 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦) | |
16 | 15 | oveq2d 7442 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (i · (𝑦 · 1)) = (i · 𝑦)) |
17 | 14, 16 | eqtrd 2768 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → ((i · 𝑦) · 1) = (i · 𝑦)) |
18 | 11, 17 | oveqan12d 7445 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 · 1) + ((i · 𝑦) · 1)) = (𝑥 + (i · 𝑦))) |
19 | 10, 18 | eqtrd 2768 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦))) |
20 | oveq1 7433 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = ((𝑥 + (i · 𝑦)) · 1)) | |
21 | id 22 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦))) | |
22 | 20, 21 | eqeq12d 2744 | . . . 4 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((𝐴 · 1) = 𝐴 ↔ ((𝑥 + (i · 𝑦)) · 1) = (𝑥 + (i · 𝑦)))) |
23 | 19, 22 | syl5ibrcom 246 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴)) |
24 | 23 | rexlimivv 3197 | . 2 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (𝐴 · 1) = 𝐴) |
25 | 1, 24 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3067 (class class class)co 7426 ℂcc 11144 ℝcr 11145 1c1 11147 ici 11148 + caddc 11149 · cmul 11151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-mulcl 11208 ax-mulcom 11210 ax-mulass 11212 ax-distr 11213 ax-1rid 11216 ax-cnre 11219 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-iota 6505 df-fv 6561 df-ov 7429 |
This theorem is referenced by: mullid 11251 mulridi 11256 mulridd 11269 muleqadd 11896 divdiv1 11963 conjmul 11969 expmul 14112 binom21 14221 binom2sub1 14223 sq01 14227 bernneq 14231 hashiun 15808 fprodcvg 15914 prodmolem2a 15918 efexp 16085 cncrng 21323 cncrngOLD 21324 cnfld1 21328 cnfld1OLD 21329 0dgr 26199 ecxp 26627 dvcxp1 26694 dvcncxp1 26697 efrlim 26921 efrlimOLD 26922 lgsdilem2 27286 axcontlem7 28801 ipasslem2 30662 addltmulALT 32276 0dp2dp 32653 zrhnm 33603 2even 47379 |
Copyright terms: Public domain | W3C validator |