MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  creur Structured version   Visualization version   GIF version

Theorem creur 11620
Description: The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
creur (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem creur
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10626 . 2 (𝐴 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)))
2 cru 11618 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
32ancoms 459 . . . . . . . . . 10 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
4 eqcom 2825 . . . . . . . . . 10 ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)))
5 ancom 461 . . . . . . . . . 10 ((𝑦 = 𝑤𝑥 = 𝑧) ↔ (𝑥 = 𝑧𝑦 = 𝑤))
63, 4, 53bitr4g 315 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑦 = 𝑤𝑥 = 𝑧)))
76anassrs 468 . . . . . . . 8 ((((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑦 = 𝑤𝑥 = 𝑧)))
87rexbidva 3293 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ ∃𝑦 ∈ ℝ (𝑦 = 𝑤𝑥 = 𝑧)))
9 biidd 263 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑥 = 𝑧𝑥 = 𝑧))
109ceqsrexv 3646 . . . . . . . 8 (𝑤 ∈ ℝ → (∃𝑦 ∈ ℝ (𝑦 = 𝑤𝑥 = 𝑧) ↔ 𝑥 = 𝑧))
1110ad2antlr 723 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑦 = 𝑤𝑥 = 𝑧) ↔ 𝑥 = 𝑧))
128, 11bitrd 280 . . . . . 6 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧))
1312ralrimiva 3179 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧))
14 reu6i 3716 . . . . 5 ((𝑧 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
1513, 14syldan 591 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
16 eqeq1 2822 . . . . . 6 (𝐴 = (𝑧 + (i · 𝑤)) → (𝐴 = (𝑥 + (i · 𝑦)) ↔ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1716rexbidv 3294 . . . . 5 (𝐴 = (𝑧 + (i · 𝑤)) → (∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1817reubidv 3387 . . . 4 (𝐴 = (𝑧 + (i · 𝑤)) → (∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1915, 18syl5ibrcom 248 . . 3 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))))
2019rexlimivv 3289 . 2 (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
211, 20syl 17 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  ∃!wreu 3137  (class class class)co 7145  cc 10523  cr 10524  ici 10527   + caddc 10528   · cmul 10530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator