Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > creur | Structured version Visualization version GIF version |
Description: The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
creur | ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 10903 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤))) | |
2 | cru 11895 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | |
3 | 2 | ancoms 458 | . . . . . . . . . 10 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
4 | eqcom 2745 | . . . . . . . . . 10 ⊢ ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤))) | |
5 | ancom 460 | . . . . . . . . . 10 ⊢ ((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) | |
6 | 3, 4, 5 | 3bitr4g 313 | . . . . . . . . 9 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑦 = 𝑤 ∧ 𝑥 = 𝑧))) |
7 | 6 | anassrs 467 | . . . . . . . 8 ⊢ ((((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑦 = 𝑤 ∧ 𝑥 = 𝑧))) |
8 | 7 | rexbidva 3224 | . . . . . . 7 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ ∃𝑦 ∈ ℝ (𝑦 = 𝑤 ∧ 𝑥 = 𝑧))) |
9 | biidd 261 | . . . . . . . . 9 ⊢ (𝑦 = 𝑤 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑧)) | |
10 | 9 | ceqsrexv 3578 | . . . . . . . 8 ⊢ (𝑤 ∈ ℝ → (∃𝑦 ∈ ℝ (𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ↔ 𝑥 = 𝑧)) |
11 | 10 | ad2antlr 723 | . . . . . . 7 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑦 = 𝑤 ∧ 𝑥 = 𝑧) ↔ 𝑥 = 𝑧)) |
12 | 8, 11 | bitrd 278 | . . . . . 6 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧)) |
13 | 12 | ralrimiva 3107 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧)) |
14 | reu6i 3658 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) | |
15 | 13, 14 | syldan 590 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) |
16 | eqeq1 2742 | . . . . . 6 ⊢ (𝐴 = (𝑧 + (i · 𝑤)) → (𝐴 = (𝑥 + (i · 𝑦)) ↔ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))) | |
17 | 16 | rexbidv 3225 | . . . . 5 ⊢ (𝐴 = (𝑧 + (i · 𝑤)) → (∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))) |
18 | 17 | reubidv 3315 | . . . 4 ⊢ (𝐴 = (𝑧 + (i · 𝑤)) → (∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))) |
19 | 15, 18 | syl5ibrcom 246 | . . 3 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))) |
20 | 19 | rexlimivv 3220 | . 2 ⊢ (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
21 | 1, 20 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∃!wreu 3065 (class class class)co 7255 ℂcc 10800 ℝcr 10801 ici 10804 + caddc 10805 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |