MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  creur Structured version   Visualization version   GIF version

Theorem creur 11789
Description: The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
creur (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem creur
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10795 . 2 (𝐴 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)))
2 cru 11787 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
32ancoms 462 . . . . . . . . . 10 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
4 eqcom 2743 . . . . . . . . . 10 ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)))
5 ancom 464 . . . . . . . . . 10 ((𝑦 = 𝑤𝑥 = 𝑧) ↔ (𝑥 = 𝑧𝑦 = 𝑤))
63, 4, 53bitr4g 317 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑦 = 𝑤𝑥 = 𝑧)))
76anassrs 471 . . . . . . . 8 ((((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑦 = 𝑤𝑥 = 𝑧)))
87rexbidva 3205 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ ∃𝑦 ∈ ℝ (𝑦 = 𝑤𝑥 = 𝑧)))
9 biidd 265 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑥 = 𝑧𝑥 = 𝑧))
109ceqsrexv 3553 . . . . . . . 8 (𝑤 ∈ ℝ → (∃𝑦 ∈ ℝ (𝑦 = 𝑤𝑥 = 𝑧) ↔ 𝑥 = 𝑧))
1110ad2antlr 727 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑦 = 𝑤𝑥 = 𝑧) ↔ 𝑥 = 𝑧))
128, 11bitrd 282 . . . . . 6 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧))
1312ralrimiva 3095 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧))
14 reu6i 3630 . . . . 5 ((𝑧 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
1513, 14syldan 594 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
16 eqeq1 2740 . . . . . 6 (𝐴 = (𝑧 + (i · 𝑤)) → (𝐴 = (𝑥 + (i · 𝑦)) ↔ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1716rexbidv 3206 . . . . 5 (𝐴 = (𝑧 + (i · 𝑤)) → (∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1817reubidv 3291 . . . 4 (𝐴 = (𝑧 + (i · 𝑤)) → (∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1915, 18syl5ibrcom 250 . . 3 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))))
2019rexlimivv 3201 . 2 (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
211, 20syl 17 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  wrex 3052  ∃!wreu 3053  (class class class)co 7191  cc 10692  cr 10693  ici 10696   + caddc 10697   · cmul 10699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator