MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  creur Structured version   Visualization version   GIF version

Theorem creur 12252
Description: The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
creur (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem creur
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11252 . 2 (𝐴 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)))
2 cru 12250 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
32ancoms 457 . . . . . . . . . 10 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
4 eqcom 2733 . . . . . . . . . 10 ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)))
5 ancom 459 . . . . . . . . . 10 ((𝑦 = 𝑤𝑥 = 𝑧) ↔ (𝑥 = 𝑧𝑦 = 𝑤))
63, 4, 53bitr4g 313 . . . . . . . . 9 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑦 = 𝑤𝑥 = 𝑧)))
76anassrs 466 . . . . . . . 8 ((((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑦 = 𝑤𝑥 = 𝑧)))
87rexbidva 3167 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ ∃𝑦 ∈ ℝ (𝑦 = 𝑤𝑥 = 𝑧)))
9 biidd 261 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑥 = 𝑧𝑥 = 𝑧))
109ceqsrexv 3639 . . . . . . . 8 (𝑤 ∈ ℝ → (∃𝑦 ∈ ℝ (𝑦 = 𝑤𝑥 = 𝑧) ↔ 𝑥 = 𝑧))
1110ad2antlr 725 . . . . . . 7 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑦 = 𝑤𝑥 = 𝑧) ↔ 𝑥 = 𝑧))
128, 11bitrd 278 . . . . . 6 (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧))
1312ralrimiva 3136 . . . . 5 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧))
14 reu6i 3721 . . . . 5 ((𝑧 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑥 = 𝑧)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
1513, 14syldan 589 . . . 4 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))
16 eqeq1 2730 . . . . . 6 (𝐴 = (𝑧 + (i · 𝑤)) → (𝐴 = (𝑥 + (i · 𝑦)) ↔ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1716rexbidv 3169 . . . . 5 (𝐴 = (𝑧 + (i · 𝑤)) → (∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1817reubidv 3382 . . . 4 (𝐴 = (𝑧 + (i · 𝑤)) → (∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))))
1915, 18syl5ibrcom 246 . . 3 ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))))
2019rexlimivv 3190 . 2 (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
211, 20syl 17 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  ∃!wreu 3362  (class class class)co 7416  cc 11147  cr 11148  ici 11151   + caddc 11152   · cmul 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-po 5586  df-so 5587  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator