MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02 Structured version   Visualization version   GIF version

Theorem mul02 11437
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)

Proof of Theorem mul02
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11256 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 0cn 11251 . . . . . . 7 0 ∈ ℂ
3 recn 11243 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4 ax-icn 11212 . . . . . . . 8 i ∈ ℂ
5 recn 11243 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
6 mulcl 11237 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
74, 5, 6sylancr 587 . . . . . . 7 (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ)
8 adddi 11242 . . . . . . 7 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦))))
92, 3, 7, 8mp3an3an 1466 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦))))
10 mul02lem2 11436 . . . . . . 7 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
11 mul12 11424 . . . . . . . . 9 ((0 ∈ ℂ ∧ i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · (i · 𝑦)) = (i · (0 · 𝑦)))
122, 4, 5, 11mp3an12i 1464 . . . . . . . 8 (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · (0 · 𝑦)))
13 mul02lem2 11436 . . . . . . . . 9 (𝑦 ∈ ℝ → (0 · 𝑦) = 0)
1413oveq2d 7447 . . . . . . . 8 (𝑦 ∈ ℝ → (i · (0 · 𝑦)) = (i · 0))
1512, 14eqtrd 2775 . . . . . . 7 (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · 0))
1610, 15oveqan12d 7450 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 · 𝑥) + (0 · (i · 𝑦))) = (0 + (i · 0)))
179, 16eqtrd 2775 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0)))
18 cnre 11256 . . . . . . . 8 (0 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)))
192, 18ax-mp 5 . . . . . . 7 𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦))
20 oveq2 7439 . . . . . . . . . 10 (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 · (𝑥 + (i · 𝑦))))
2120eqeq1d 2737 . . . . . . . . 9 (0 = (𝑥 + (i · 𝑦)) → ((0 · 0) = (0 + (i · 0)) ↔ (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0))))
2217, 21syl5ibrcom 247 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0))))
2322rexlimivv 3199 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0)))
2419, 23ax-mp 5 . . . . . 6 (0 · 0) = (0 + (i · 0))
25 0re 11261 . . . . . . 7 0 ∈ ℝ
26 mul02lem2 11436 . . . . . . 7 (0 ∈ ℝ → (0 · 0) = 0)
2725, 26ax-mp 5 . . . . . 6 (0 · 0) = 0
2824, 27eqtr3i 2765 . . . . 5 (0 + (i · 0)) = 0
2917, 28eqtrdi 2791 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = 0)
30 oveq2 7439 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = (0 · (𝑥 + (i · 𝑦))))
3130eqeq1d 2737 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((0 · 𝐴) = 0 ↔ (0 · (𝑥 + (i · 𝑦))) = 0))
3229, 31syl5ibrcom 247 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0))
3332rexlimivv 3199 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0)
341, 33syl 17 1 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  ici 11155   + caddc 11156   · cmul 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298
This theorem is referenced by:  mul01  11438  cnegex2  11441  mul02i  11448  mul02d  11457  bcval5  14354  fsumconst  15823  demoivreALT  16234  nnnn0modprm0  16840  cnfldmulg  21434  itg2mulc  25797  dvcmulf  25997  coe0  26310  plymul0or  26337  sineq0  26581  jensen  27047  musumsum  27250  lgsne0  27394  brbtwn2  28935  ax5seglem4  28962  axeuclidlem  28992  axeuclid  28993  axcontlem2  28995  axcontlem4  28997  eulerpartlemb  34350  expgrowth  44331  dvcosax  45882
  Copyright terms: Public domain W3C validator