MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02 Structured version   Visualization version   GIF version

Theorem mul02 10540
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)

Proof of Theorem mul02
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10360 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 recn 10349 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
3 ax-icn 10318 . . . . . . . 8 i ∈ ℂ
4 recn 10349 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
5 mulcl 10343 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
63, 4, 5sylancr 581 . . . . . . 7 (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ)
7 0cn 10355 . . . . . . . 8 0 ∈ ℂ
8 adddi 10348 . . . . . . . 8 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦))))
97, 8mp3an1 1576 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦))))
102, 6, 9syl2an 589 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦))))
11 mul02lem2 10539 . . . . . . 7 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
12 mul12 10528 . . . . . . . . . 10 ((0 ∈ ℂ ∧ i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · (i · 𝑦)) = (i · (0 · 𝑦)))
137, 3, 12mp3an12 1579 . . . . . . . . 9 (𝑦 ∈ ℂ → (0 · (i · 𝑦)) = (i · (0 · 𝑦)))
144, 13syl 17 . . . . . . . 8 (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · (0 · 𝑦)))
15 mul02lem2 10539 . . . . . . . . 9 (𝑦 ∈ ℝ → (0 · 𝑦) = 0)
1615oveq2d 6926 . . . . . . . 8 (𝑦 ∈ ℝ → (i · (0 · 𝑦)) = (i · 0))
1714, 16eqtrd 2861 . . . . . . 7 (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · 0))
1811, 17oveqan12d 6929 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 · 𝑥) + (0 · (i · 𝑦))) = (0 + (i · 0)))
1910, 18eqtrd 2861 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0)))
20 cnre 10360 . . . . . . . 8 (0 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)))
217, 20ax-mp 5 . . . . . . 7 𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦))
22 oveq2 6918 . . . . . . . . . 10 (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 · (𝑥 + (i · 𝑦))))
2322eqeq1d 2827 . . . . . . . . 9 (0 = (𝑥 + (i · 𝑦)) → ((0 · 0) = (0 + (i · 0)) ↔ (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0))))
2419, 23syl5ibrcom 239 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0))))
2524rexlimivv 3246 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0)))
2621, 25ax-mp 5 . . . . . 6 (0 · 0) = (0 + (i · 0))
27 0re 10365 . . . . . . 7 0 ∈ ℝ
28 mul02lem2 10539 . . . . . . 7 (0 ∈ ℝ → (0 · 0) = 0)
2927, 28ax-mp 5 . . . . . 6 (0 · 0) = 0
3026, 29eqtr3i 2851 . . . . 5 (0 + (i · 0)) = 0
3119, 30syl6eq 2877 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = 0)
32 oveq2 6918 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = (0 · (𝑥 + (i · 𝑦))))
3332eqeq1d 2827 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((0 · 𝐴) = 0 ↔ (0 · (𝑥 + (i · 𝑦))) = 0))
3431, 33syl5ibrcom 239 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0))
3534rexlimivv 3246 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0)
361, 35syl 17 1 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wrex 3118  (class class class)co 6910  cc 10257  cr 10258  0cc0 10259  ici 10261   + caddc 10262   · cmul 10264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-po 5265  df-so 5266  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-ltxr 10403
This theorem is referenced by:  mul01  10541  cnegex2  10544  mul02i  10551  mul02d  10560  bcval5  13405  fsumconst  14903  demoivreALT  15310  nnnn0modprm0  15889  cnfldmulg  20145  itg2mulc  23920  dvcmulf  24114  coe0  24418  plymul0or  24442  sineq0  24680  jensen  25135  musumsum  25338  lgsne0  25480  brbtwn2  26211  ax5seglem4  26238  axeuclidlem  26268  axeuclid  26269  axcontlem2  26271  axcontlem4  26273  eulerpartlemb  30971  expgrowth  39369  dvcosax  40930
  Copyright terms: Public domain W3C validator