MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02 Structured version   Visualization version   GIF version

Theorem mul02 11010
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)

Proof of Theorem mul02
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10830 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 0cn 10825 . . . . . . 7 0 ∈ ℂ
3 recn 10819 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4 ax-icn 10788 . . . . . . . 8 i ∈ ℂ
5 recn 10819 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
6 mulcl 10813 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
74, 5, 6sylancr 590 . . . . . . 7 (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ)
8 adddi 10818 . . . . . . 7 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦))))
92, 3, 7, 8mp3an3an 1469 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦))))
10 mul02lem2 11009 . . . . . . 7 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
11 mul12 10997 . . . . . . . . 9 ((0 ∈ ℂ ∧ i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · (i · 𝑦)) = (i · (0 · 𝑦)))
122, 4, 5, 11mp3an12i 1467 . . . . . . . 8 (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · (0 · 𝑦)))
13 mul02lem2 11009 . . . . . . . . 9 (𝑦 ∈ ℝ → (0 · 𝑦) = 0)
1413oveq2d 7229 . . . . . . . 8 (𝑦 ∈ ℝ → (i · (0 · 𝑦)) = (i · 0))
1512, 14eqtrd 2777 . . . . . . 7 (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · 0))
1610, 15oveqan12d 7232 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 · 𝑥) + (0 · (i · 𝑦))) = (0 + (i · 0)))
179, 16eqtrd 2777 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0)))
18 cnre 10830 . . . . . . . 8 (0 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)))
192, 18ax-mp 5 . . . . . . 7 𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦))
20 oveq2 7221 . . . . . . . . . 10 (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 · (𝑥 + (i · 𝑦))))
2120eqeq1d 2739 . . . . . . . . 9 (0 = (𝑥 + (i · 𝑦)) → ((0 · 0) = (0 + (i · 0)) ↔ (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0))))
2217, 21syl5ibrcom 250 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0))))
2322rexlimivv 3211 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0)))
2419, 23ax-mp 5 . . . . . 6 (0 · 0) = (0 + (i · 0))
25 0re 10835 . . . . . . 7 0 ∈ ℝ
26 mul02lem2 11009 . . . . . . 7 (0 ∈ ℝ → (0 · 0) = 0)
2725, 26ax-mp 5 . . . . . 6 (0 · 0) = 0
2824, 27eqtr3i 2767 . . . . 5 (0 + (i · 0)) = 0
2917, 28eqtrdi 2794 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = 0)
30 oveq2 7221 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = (0 · (𝑥 + (i · 𝑦))))
3130eqeq1d 2739 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((0 · 𝐴) = 0 ↔ (0 · (𝑥 + (i · 𝑦))) = 0))
3229, 31syl5ibrcom 250 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0))
3332rexlimivv 3211 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0)
341, 33syl 17 1 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wrex 3062  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  ici 10731   + caddc 10732   · cmul 10734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-ltxr 10872
This theorem is referenced by:  mul01  11011  cnegex2  11014  mul02i  11021  mul02d  11030  bcval5  13884  fsumconst  15354  demoivreALT  15762  nnnn0modprm0  16359  cnfldmulg  20395  itg2mulc  24645  dvcmulf  24842  coe0  25150  plymul0or  25174  sineq0  25413  jensen  25871  musumsum  26074  lgsne0  26216  brbtwn2  26996  ax5seglem4  27023  axeuclidlem  27053  axeuclid  27054  axcontlem2  27056  axcontlem4  27058  eulerpartlemb  32047  expgrowth  41626  dvcosax  43142
  Copyright terms: Public domain W3C validator