| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul02 | Structured version Visualization version GIF version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul02 | ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 11232 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
| 2 | 0cn 11227 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
| 3 | recn 11219 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 4 | ax-icn 11188 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 5 | recn 11219 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
| 6 | mulcl 11213 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ) |
| 8 | adddi 11218 | . . . . . . 7 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦)))) | |
| 9 | 2, 3, 7, 8 | mp3an3an 1469 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦)))) |
| 10 | mul02lem2 11412 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (0 · 𝑥) = 0) | |
| 11 | mul12 11400 | . . . . . . . . 9 ⊢ ((0 ∈ ℂ ∧ i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · (i · 𝑦)) = (i · (0 · 𝑦))) | |
| 12 | 2, 4, 5, 11 | mp3an12i 1467 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · (0 · 𝑦))) |
| 13 | mul02lem2 11412 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (0 · 𝑦) = 0) | |
| 14 | 13 | oveq2d 7421 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (i · (0 · 𝑦)) = (i · 0)) |
| 15 | 12, 14 | eqtrd 2770 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · 0)) |
| 16 | 10, 15 | oveqan12d 7424 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 · 𝑥) + (0 · (i · 𝑦))) = (0 + (i · 0))) |
| 17 | 9, 16 | eqtrd 2770 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0))) |
| 18 | cnre 11232 | . . . . . . . 8 ⊢ (0 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦))) | |
| 19 | 2, 18 | ax-mp 5 | . . . . . . 7 ⊢ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) |
| 20 | oveq2 7413 | . . . . . . . . . 10 ⊢ (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 · (𝑥 + (i · 𝑦)))) | |
| 21 | 20 | eqeq1d 2737 | . . . . . . . . 9 ⊢ (0 = (𝑥 + (i · 𝑦)) → ((0 · 0) = (0 + (i · 0)) ↔ (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0)))) |
| 22 | 17, 21 | syl5ibrcom 247 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0)))) |
| 23 | 22 | rexlimivv 3186 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0))) |
| 24 | 19, 23 | ax-mp 5 | . . . . . 6 ⊢ (0 · 0) = (0 + (i · 0)) |
| 25 | 0re 11237 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 26 | mul02lem2 11412 | . . . . . . 7 ⊢ (0 ∈ ℝ → (0 · 0) = 0) | |
| 27 | 25, 26 | ax-mp 5 | . . . . . 6 ⊢ (0 · 0) = 0 |
| 28 | 24, 27 | eqtr3i 2760 | . . . . 5 ⊢ (0 + (i · 0)) = 0 |
| 29 | 17, 28 | eqtrdi 2786 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = 0) |
| 30 | oveq2 7413 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = (0 · (𝑥 + (i · 𝑦)))) | |
| 31 | 30 | eqeq1d 2737 | . . . 4 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((0 · 𝐴) = 0 ↔ (0 · (𝑥 + (i · 𝑦))) = 0)) |
| 32 | 29, 31 | syl5ibrcom 247 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0)) |
| 33 | 32 | rexlimivv 3186 | . 2 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0) |
| 34 | 1, 33 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 (class class class)co 7405 ℂcc 11127 ℝcr 11128 0cc0 11129 ici 11131 + caddc 11132 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 |
| This theorem is referenced by: mul01 11414 cnegex2 11417 mul02i 11424 mul02d 11433 bcval5 14336 fsumconst 15806 demoivreALT 16219 nnnn0modprm0 16826 cnfldmulg 21366 itg2mulc 25700 dvcmulf 25900 coe0 26213 plymul0or 26240 sineq0 26485 jensen 26951 musumsum 27154 lgsne0 27298 brbtwn2 28884 ax5seglem4 28911 axeuclidlem 28941 axeuclid 28942 axcontlem2 28944 axcontlem4 28946 eulerpartlemb 34400 expgrowth 44359 dvcosax 45955 |
| Copyright terms: Public domain | W3C validator |