MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02 Structured version   Visualization version   GIF version

Theorem mul02 11352
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)

Proof of Theorem mul02
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11171 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 0cn 11166 . . . . . . 7 0 ∈ ℂ
3 recn 11158 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4 ax-icn 11127 . . . . . . . 8 i ∈ ℂ
5 recn 11158 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
6 mulcl 11152 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ)
74, 5, 6sylancr 587 . . . . . . 7 (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ)
8 adddi 11157 . . . . . . 7 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦))))
92, 3, 7, 8mp3an3an 1469 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦))))
10 mul02lem2 11351 . . . . . . 7 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
11 mul12 11339 . . . . . . . . 9 ((0 ∈ ℂ ∧ i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · (i · 𝑦)) = (i · (0 · 𝑦)))
122, 4, 5, 11mp3an12i 1467 . . . . . . . 8 (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · (0 · 𝑦)))
13 mul02lem2 11351 . . . . . . . . 9 (𝑦 ∈ ℝ → (0 · 𝑦) = 0)
1413oveq2d 7403 . . . . . . . 8 (𝑦 ∈ ℝ → (i · (0 · 𝑦)) = (i · 0))
1512, 14eqtrd 2764 . . . . . . 7 (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · 0))
1610, 15oveqan12d 7406 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 · 𝑥) + (0 · (i · 𝑦))) = (0 + (i · 0)))
179, 16eqtrd 2764 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0)))
18 cnre 11171 . . . . . . . 8 (0 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)))
192, 18ax-mp 5 . . . . . . 7 𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦))
20 oveq2 7395 . . . . . . . . . 10 (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 · (𝑥 + (i · 𝑦))))
2120eqeq1d 2731 . . . . . . . . 9 (0 = (𝑥 + (i · 𝑦)) → ((0 · 0) = (0 + (i · 0)) ↔ (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0))))
2217, 21syl5ibrcom 247 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0))))
2322rexlimivv 3179 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0)))
2419, 23ax-mp 5 . . . . . 6 (0 · 0) = (0 + (i · 0))
25 0re 11176 . . . . . . 7 0 ∈ ℝ
26 mul02lem2 11351 . . . . . . 7 (0 ∈ ℝ → (0 · 0) = 0)
2725, 26ax-mp 5 . . . . . 6 (0 · 0) = 0
2824, 27eqtr3i 2754 . . . . 5 (0 + (i · 0)) = 0
2917, 28eqtrdi 2780 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = 0)
30 oveq2 7395 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = (0 · (𝑥 + (i · 𝑦))))
3130eqeq1d 2731 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((0 · 𝐴) = 0 ↔ (0 · (𝑥 + (i · 𝑦))) = 0))
3229, 31syl5ibrcom 247 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0))
3332rexlimivv 3179 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0)
341, 33syl 17 1 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  ici 11070   + caddc 11071   · cmul 11073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213
This theorem is referenced by:  mul01  11353  cnegex2  11356  mul02i  11363  mul02d  11372  bcval5  14283  fsumconst  15756  demoivreALT  16169  nnnn0modprm0  16777  cnfldmulg  21315  itg2mulc  25648  dvcmulf  25848  coe0  26161  plymul0or  26188  sineq0  26433  jensen  26899  musumsum  27102  lgsne0  27246  brbtwn2  28832  ax5seglem4  28859  axeuclidlem  28889  axeuclid  28890  axcontlem2  28892  axcontlem4  28894  eulerpartlemb  34359  expgrowth  44324  dvcosax  45924
  Copyright terms: Public domain W3C validator