Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul02 | Structured version Visualization version GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul02 | ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 10830 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
2 | 0cn 10825 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
3 | recn 10819 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
4 | ax-icn 10788 | . . . . . . . 8 ⊢ i ∈ ℂ | |
5 | recn 10819 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
6 | mulcl 10813 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (i · 𝑦) ∈ ℂ) | |
7 | 4, 5, 6 | sylancr 590 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (i · 𝑦) ∈ ℂ) |
8 | adddi 10818 | . . . . . . 7 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (i · 𝑦) ∈ ℂ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦)))) | |
9 | 2, 3, 7, 8 | mp3an3an 1469 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦)))) |
10 | mul02lem2 11009 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (0 · 𝑥) = 0) | |
11 | mul12 10997 | . . . . . . . . 9 ⊢ ((0 ∈ ℂ ∧ i ∈ ℂ ∧ 𝑦 ∈ ℂ) → (0 · (i · 𝑦)) = (i · (0 · 𝑦))) | |
12 | 2, 4, 5, 11 | mp3an12i 1467 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · (0 · 𝑦))) |
13 | mul02lem2 11009 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (0 · 𝑦) = 0) | |
14 | 13 | oveq2d 7229 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (i · (0 · 𝑦)) = (i · 0)) |
15 | 12, 14 | eqtrd 2777 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (0 · (i · 𝑦)) = (i · 0)) |
16 | 10, 15 | oveqan12d 7232 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 · 𝑥) + (0 · (i · 𝑦))) = (0 + (i · 0))) |
17 | 9, 16 | eqtrd 2777 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0))) |
18 | cnre 10830 | . . . . . . . 8 ⊢ (0 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦))) | |
19 | 2, 18 | ax-mp 5 | . . . . . . 7 ⊢ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) |
20 | oveq2 7221 | . . . . . . . . . 10 ⊢ (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 · (𝑥 + (i · 𝑦)))) | |
21 | 20 | eqeq1d 2739 | . . . . . . . . 9 ⊢ (0 = (𝑥 + (i · 𝑦)) → ((0 · 0) = (0 + (i · 0)) ↔ (0 · (𝑥 + (i · 𝑦))) = (0 + (i · 0)))) |
22 | 17, 21 | syl5ibrcom 250 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0)))) |
23 | 22 | rexlimivv 3211 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 0 = (𝑥 + (i · 𝑦)) → (0 · 0) = (0 + (i · 0))) |
24 | 19, 23 | ax-mp 5 | . . . . . 6 ⊢ (0 · 0) = (0 + (i · 0)) |
25 | 0re 10835 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
26 | mul02lem2 11009 | . . . . . . 7 ⊢ (0 ∈ ℝ → (0 · 0) = 0) | |
27 | 25, 26 | ax-mp 5 | . . . . . 6 ⊢ (0 · 0) = 0 |
28 | 24, 27 | eqtr3i 2767 | . . . . 5 ⊢ (0 + (i · 0)) = 0 |
29 | 17, 28 | eqtrdi 2794 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = 0) |
30 | oveq2 7221 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = (0 · (𝑥 + (i · 𝑦)))) | |
31 | 30 | eqeq1d 2739 | . . . 4 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((0 · 𝐴) = 0 ↔ (0 · (𝑥 + (i · 𝑦))) = 0)) |
32 | 29, 31 | syl5ibrcom 250 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0)) |
33 | 32 | rexlimivv 3211 | . 2 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0) |
34 | 1, 33 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 (class class class)co 7213 ℂcc 10727 ℝcr 10728 0cc0 10729 ici 10731 + caddc 10732 · cmul 10734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 |
This theorem is referenced by: mul01 11011 cnegex2 11014 mul02i 11021 mul02d 11030 bcval5 13884 fsumconst 15354 demoivreALT 15762 nnnn0modprm0 16359 cnfldmulg 20395 itg2mulc 24645 dvcmulf 24842 coe0 25150 plymul0or 25174 sineq0 25413 jensen 25871 musumsum 26074 lgsne0 26216 brbtwn2 26996 ax5seglem4 27023 axeuclidlem 27053 axeuclid 27054 axcontlem2 27056 axcontlem4 27058 eulerpartlemb 32047 expgrowth 41626 dvcosax 43142 |
Copyright terms: Public domain | W3C validator |