Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-mullid Structured version   Visualization version   GIF version

Theorem sn-mullid 41623
Description: mullid 11220 without ax-mulcom 11180. (Contributed by SN, 27-May-2024.)
Assertion
Ref Expression
sn-mullid (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)

Proof of Theorem sn-mullid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11218 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 1cnd 11216 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ)
3 recn 11206 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
43adantr 480 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
5 ax-icn 11175 . . . . . . . 8 i ∈ ℂ
65a1i 11 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
7 recn 11206 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
87adantl 481 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
96, 8mulcld 11241 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ)
102, 4, 9adddid 11245 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (𝑥 + (i · 𝑦))) = ((1 · 𝑥) + (1 · (i · 𝑦))))
11 remullid 41621 . . . . . . 7 (𝑥 ∈ ℝ → (1 · 𝑥) = 𝑥)
1211adantr 480 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · 𝑥) = 𝑥)
132, 6, 8mulassd 11244 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = (1 · (i · 𝑦)))
14 sn-1ticom 41622 . . . . . . . . . 10 (1 · i) = (i · 1)
1514oveq1i 7422 . . . . . . . . 9 ((1 · i) · 𝑦) = ((i · 1) · 𝑦)
1615a1i 11 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = ((i · 1) · 𝑦))
176, 2, 8mulassd 11244 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · 1) · 𝑦) = (i · (1 · 𝑦)))
18 remullid 41621 . . . . . . . . . 10 (𝑦 ∈ ℝ → (1 · 𝑦) = 𝑦)
1918adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · 𝑦) = 𝑦)
2019oveq2d 7428 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · (1 · 𝑦)) = (i · 𝑦))
2116, 17, 203eqtrd 2775 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = (i · 𝑦))
2213, 21eqtr3d 2773 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (i · 𝑦)) = (i · 𝑦))
2312, 22oveq12d 7430 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · 𝑥) + (1 · (i · 𝑦))) = (𝑥 + (i · 𝑦)))
2410, 23eqtrd 2771 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦)))
25 oveq2 7420 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = (1 · (𝑥 + (i · 𝑦))))
26 id 22 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦)))
2725, 26eqeq12d 2747 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((1 · 𝐴) = 𝐴 ↔ (1 · (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦))))
2824, 27syl5ibrcom 246 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = 𝐴))
2928rexlimivv 3198 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = 𝐴)
301, 29syl 17 1 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wrex 3069  (class class class)co 7412  cc 11114  cr 11115  1c1 11117  ici 11118   + caddc 11119   · cmul 11121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-ltxr 11260  df-2 12282  df-3 12283  df-resub 41554
This theorem is referenced by:  it1ei  41624
  Copyright terms: Public domain W3C validator