![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-mullid | Structured version Visualization version GIF version |
Description: mullid 11220 without ax-mulcom 11180. (Contributed by SN, 27-May-2024.) |
Ref | Expression |
---|---|
sn-mullid | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 11218 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
2 | 1cnd 11216 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ) | |
3 | recn 11206 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ) |
5 | ax-icn 11175 | . . . . . . . 8 ⊢ i ∈ ℂ | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ) |
7 | recn 11206 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
9 | 6, 8 | mulcld 11241 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ) |
10 | 2, 4, 9 | adddid 11245 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (𝑥 + (i · 𝑦))) = ((1 · 𝑥) + (1 · (i · 𝑦)))) |
11 | remullid 41621 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (1 · 𝑥) = 𝑥) | |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · 𝑥) = 𝑥) |
13 | 2, 6, 8 | mulassd 11244 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = (1 · (i · 𝑦))) |
14 | sn-1ticom 41622 | . . . . . . . . . 10 ⊢ (1 · i) = (i · 1) | |
15 | 14 | oveq1i 7422 | . . . . . . . . 9 ⊢ ((1 · i) · 𝑦) = ((i · 1) · 𝑦) |
16 | 15 | a1i 11 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = ((i · 1) · 𝑦)) |
17 | 6, 2, 8 | mulassd 11244 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · 1) · 𝑦) = (i · (1 · 𝑦))) |
18 | remullid 41621 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → (1 · 𝑦) = 𝑦) | |
19 | 18 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · 𝑦) = 𝑦) |
20 | 19 | oveq2d 7428 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · (1 · 𝑦)) = (i · 𝑦)) |
21 | 16, 17, 20 | 3eqtrd 2775 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = (i · 𝑦)) |
22 | 13, 21 | eqtr3d 2773 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (i · 𝑦)) = (i · 𝑦)) |
23 | 12, 22 | oveq12d 7430 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · 𝑥) + (1 · (i · 𝑦))) = (𝑥 + (i · 𝑦))) |
24 | 10, 23 | eqtrd 2771 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦))) |
25 | oveq2 7420 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = (1 · (𝑥 + (i · 𝑦)))) | |
26 | id 22 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦))) | |
27 | 25, 26 | eqeq12d 2747 | . . . 4 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((1 · 𝐴) = 𝐴 ↔ (1 · (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦)))) |
28 | 24, 27 | syl5ibrcom 246 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = 𝐴)) |
29 | 28 | rexlimivv 3198 | . 2 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = 𝐴) |
30 | 1, 29 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 (class class class)co 7412 ℂcc 11114 ℝcr 11115 1c1 11117 ici 11118 + caddc 11119 · cmul 11121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-ltxr 11260 df-2 12282 df-3 12283 df-resub 41554 |
This theorem is referenced by: it1ei 41624 |
Copyright terms: Public domain | W3C validator |