Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-mullid Structured version   Visualization version   GIF version

Theorem sn-mullid 42469
Description: mullid 11106 without ax-mulcom 11065. (Contributed by SN, 27-May-2024.)
Assertion
Ref Expression
sn-mullid (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)

Proof of Theorem sn-mullid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11104 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 1cnd 11102 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ)
3 recn 11091 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
43adantr 480 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
5 ax-icn 11060 . . . . . . . 8 i ∈ ℂ
65a1i 11 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
7 recn 11091 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
87adantl 481 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
96, 8mulcld 11127 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ)
102, 4, 9adddid 11131 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (𝑥 + (i · 𝑦))) = ((1 · 𝑥) + (1 · (i · 𝑦))))
11 remullid 42467 . . . . . . 7 (𝑥 ∈ ℝ → (1 · 𝑥) = 𝑥)
1211adantr 480 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · 𝑥) = 𝑥)
132, 6, 8mulassd 11130 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = (1 · (i · 𝑦)))
14 sn-1ticom 42468 . . . . . . . . . 10 (1 · i) = (i · 1)
1514oveq1i 7351 . . . . . . . . 9 ((1 · i) · 𝑦) = ((i · 1) · 𝑦)
1615a1i 11 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = ((i · 1) · 𝑦))
176, 2, 8mulassd 11130 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · 1) · 𝑦) = (i · (1 · 𝑦)))
18 remullid 42467 . . . . . . . . . 10 (𝑦 ∈ ℝ → (1 · 𝑦) = 𝑦)
1918adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · 𝑦) = 𝑦)
2019oveq2d 7357 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · (1 · 𝑦)) = (i · 𝑦))
2116, 17, 203eqtrd 2770 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = (i · 𝑦))
2213, 21eqtr3d 2768 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (i · 𝑦)) = (i · 𝑦))
2312, 22oveq12d 7359 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · 𝑥) + (1 · (i · 𝑦))) = (𝑥 + (i · 𝑦)))
2410, 23eqtrd 2766 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦)))
25 oveq2 7349 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = (1 · (𝑥 + (i · 𝑦))))
26 id 22 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦)))
2725, 26eqeq12d 2747 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((1 · 𝐴) = 𝐴 ↔ (1 · (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦))))
2824, 27syl5ibrcom 247 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = 𝐴))
2928rexlimivv 3174 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = 𝐴)
301, 29syl 17 1 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  (class class class)co 7341  cc 10999  cr 11000  1c1 11002  ici 11003   + caddc 11004   · cmul 11006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-ltxr 11146  df-2 12183  df-3 12184  df-resub 42399
This theorem is referenced by:  sn-it1ei  42470
  Copyright terms: Public domain W3C validator