MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cju Structured version   Visualization version   GIF version

Theorem cju 11621
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cju (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cju
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10627 . . 3 (𝐴 ∈ ℂ → ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝐴 = (𝑦 + (i · 𝑧)))
2 recn 10616 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
3 ax-icn 10585 . . . . . . . 8 i ∈ ℂ
4 recn 10616 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
5 mulcl 10610 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ)
63, 4, 5sylancr 590 . . . . . . 7 (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ)
7 subcl 10874 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (i · 𝑧) ∈ ℂ) → (𝑦 − (i · 𝑧)) ∈ ℂ)
82, 6, 7syl2an 598 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 − (i · 𝑧)) ∈ ℂ)
92adantr 484 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
106adantl 485 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · 𝑧) ∈ ℂ)
119, 10, 9ppncand 11026 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) = (𝑦 + 𝑦))
12 readdcl 10609 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ)
1312anidms 570 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 𝑦) ∈ ℝ)
1413adantr 484 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ)
1511, 14eqeltrd 2890 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ)
169, 10, 10pnncand 11025 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = ((i · 𝑧) + (i · 𝑧)))
173a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → i ∈ ℂ)
184adantl 485 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
1917, 18, 18adddid 10654 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · (𝑧 + 𝑧)) = ((i · 𝑧) + (i · 𝑧)))
2016, 19eqtr4d 2836 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = (i · (𝑧 + 𝑧)))
2120oveq2d 7151 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) = (i · (i · (𝑧 + 𝑧))))
2218, 18addcld 10649 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℂ)
23 mulass 10614 . . . . . . . . 9 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (𝑧 + 𝑧) ∈ ℂ) → ((i · i) · (𝑧 + 𝑧)) = (i · (i · (𝑧 + 𝑧))))
243, 3, 22, 23mp3an12i 1462 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) = (i · (i · (𝑧 + 𝑧))))
2521, 24eqtr4d 2836 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) = ((i · i) · (𝑧 + 𝑧)))
26 ixi 11258 . . . . . . . . 9 (i · i) = -1
27 1re 10630 . . . . . . . . . 10 1 ∈ ℝ
2827renegcli 10936 . . . . . . . . 9 -1 ∈ ℝ
2926, 28eqeltri 2886 . . . . . . . 8 (i · i) ∈ ℝ
30 simpr 488 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3130, 30readdcld 10659 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℝ)
32 remulcl 10611 . . . . . . . 8 (((i · i) ∈ ℝ ∧ (𝑧 + 𝑧) ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) ∈ ℝ)
3329, 31, 32sylancr 590 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) ∈ ℝ)
3425, 33eqeltrd 2890 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)
35 oveq2 7143 . . . . . . . . 9 (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) + 𝑥) = ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))))
3635eleq1d 2874 . . . . . . . 8 (𝑥 = (𝑦 − (i · 𝑧)) → (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ))
37 oveq2 7143 . . . . . . . . . 10 (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) − 𝑥) = ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))))
3837oveq2d 7151 . . . . . . . . 9 (𝑥 = (𝑦 − (i · 𝑧)) → (i · ((𝑦 + (i · 𝑧)) − 𝑥)) = (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))))
3938eleq1d 2874 . . . . . . . 8 (𝑥 = (𝑦 − (i · 𝑧)) → ((i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ))
4036, 39anbi12d 633 . . . . . . 7 (𝑥 = (𝑦 − (i · 𝑧)) → ((((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)))
4140rspcev 3571 . . . . . 6 (((𝑦 − (i · 𝑧)) ∈ ℂ ∧ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)) → ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
428, 15, 34, 41syl12anc 835 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
43 oveq1 7142 . . . . . . . 8 (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴 + 𝑥) = ((𝑦 + (i · 𝑧)) + 𝑥))
4443eleq1d 2874 . . . . . . 7 (𝐴 = (𝑦 + (i · 𝑧)) → ((𝐴 + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ))
45 oveq1 7142 . . . . . . . . 9 (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴𝑥) = ((𝑦 + (i · 𝑧)) − 𝑥))
4645oveq2d 7151 . . . . . . . 8 (𝐴 = (𝑦 + (i · 𝑧)) → (i · (𝐴𝑥)) = (i · ((𝑦 + (i · 𝑧)) − 𝑥)))
4746eleq1d 2874 . . . . . . 7 (𝐴 = (𝑦 + (i · 𝑧)) → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
4844, 47anbi12d 633 . . . . . 6 (𝐴 = (𝑦 + (i · 𝑧)) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)))
4948rexbidv 3256 . . . . 5 (𝐴 = (𝑦 + (i · 𝑧)) → (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)))
5042, 49syl5ibrcom 250 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
5150rexlimivv 3251 . . 3 (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
521, 51syl 17 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
53 an4 655 . . . 4 ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) ↔ (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)))
54 resubcl 10939 . . . . . . 7 (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ)
55 pnpcan 10914 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥𝑦))
56553expb 1117 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥𝑦))
5756eleq1d 2874 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ ↔ (𝑥𝑦) ∈ ℝ))
5854, 57syl5ib 247 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → (𝑥𝑦) ∈ ℝ))
59 resubcl 10939 . . . . . . . 8 (((i · (𝐴𝑦)) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ)
6059ancoms 462 . . . . . . 7 (((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ)
613a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → i ∈ ℂ)
62 subcl 10874 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴𝑦) ∈ ℂ)
6362adantrl 715 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴𝑦) ∈ ℂ)
64 subcl 10874 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴𝑥) ∈ ℂ)
6564adantrr 716 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴𝑥) ∈ ℂ)
6661, 63, 65subdid 11085 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i · ((𝐴𝑦) − (𝐴𝑥))) = ((i · (𝐴𝑦)) − (i · (𝐴𝑥))))
67 nnncan1 10911 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
68673com23 1123 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
69683expb 1117 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
7069oveq2d 7151 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i · ((𝐴𝑦) − (𝐴𝑥))) = (i · (𝑥𝑦)))
7166, 70eqtr3d 2835 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) = (i · (𝑥𝑦)))
7271eleq1d 2874 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ ↔ (i · (𝑥𝑦)) ∈ ℝ))
7360, 72syl5ib 247 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ) → (i · (𝑥𝑦)) ∈ ℝ))
7458, 73anim12d 611 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → ((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
75 rimul 11616 . . . . . 6 (((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ) → (𝑥𝑦) = 0)
7675a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ) → (𝑥𝑦) = 0))
77 subeq0 10901 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
7877biimpd 232 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 → 𝑥 = 𝑦))
7978adantl 485 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑥𝑦) = 0 → 𝑥 = 𝑦))
8074, 76, 793syld 60 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
8153, 80syl5bi 245 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
8281ralrimivva 3156 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
83 oveq2 7143 . . . . 5 (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦))
8483eleq1d 2874 . . . 4 (𝑥 = 𝑦 → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑦) ∈ ℝ))
85 oveq2 7143 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
8685oveq2d 7151 . . . . 5 (𝑥 = 𝑦 → (i · (𝐴𝑥)) = (i · (𝐴𝑦)))
8786eleq1d 2874 . . . 4 (𝑥 = 𝑦 → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · (𝐴𝑦)) ∈ ℝ))
8884, 87anbi12d 633 . . 3 (𝑥 = 𝑦 → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)))
8988reu4 3670 . 2 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦)))
9052, 82, 89sylanbrc 586 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  ∃!wreu 3108  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287
This theorem is referenced by:  cjth  14454  cjf  14455  remim  14468
  Copyright terms: Public domain W3C validator