MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cju Structured version   Visualization version   GIF version

Theorem cju 11626
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cju (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cju
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10630 . . 3 (𝐴 ∈ ℂ → ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝐴 = (𝑦 + (i · 𝑧)))
2 recn 10619 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
3 ax-icn 10588 . . . . . . . 8 i ∈ ℂ
4 recn 10619 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
5 mulcl 10613 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ)
63, 4, 5sylancr 589 . . . . . . 7 (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ)
7 subcl 10877 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (i · 𝑧) ∈ ℂ) → (𝑦 − (i · 𝑧)) ∈ ℂ)
82, 6, 7syl2an 597 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 − (i · 𝑧)) ∈ ℂ)
92adantr 483 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
106adantl 484 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · 𝑧) ∈ ℂ)
119, 10, 9ppncand 11029 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) = (𝑦 + 𝑦))
12 readdcl 10612 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ)
1312anidms 569 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 𝑦) ∈ ℝ)
1413adantr 483 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ)
1511, 14eqeltrd 2911 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ)
169, 10, 10pnncand 11028 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = ((i · 𝑧) + (i · 𝑧)))
173a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → i ∈ ℂ)
184adantl 484 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
1917, 18, 18adddid 10657 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · (𝑧 + 𝑧)) = ((i · 𝑧) + (i · 𝑧)))
2016, 19eqtr4d 2857 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = (i · (𝑧 + 𝑧)))
2120oveq2d 7164 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) = (i · (i · (𝑧 + 𝑧))))
2218, 18addcld 10652 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℂ)
23 mulass 10617 . . . . . . . . 9 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (𝑧 + 𝑧) ∈ ℂ) → ((i · i) · (𝑧 + 𝑧)) = (i · (i · (𝑧 + 𝑧))))
243, 3, 22, 23mp3an12i 1459 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) = (i · (i · (𝑧 + 𝑧))))
2521, 24eqtr4d 2857 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) = ((i · i) · (𝑧 + 𝑧)))
26 ixi 11261 . . . . . . . . 9 (i · i) = -1
27 1re 10633 . . . . . . . . . 10 1 ∈ ℝ
2827renegcli 10939 . . . . . . . . 9 -1 ∈ ℝ
2926, 28eqeltri 2907 . . . . . . . 8 (i · i) ∈ ℝ
30 simpr 487 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3130, 30readdcld 10662 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℝ)
32 remulcl 10614 . . . . . . . 8 (((i · i) ∈ ℝ ∧ (𝑧 + 𝑧) ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) ∈ ℝ)
3329, 31, 32sylancr 589 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) ∈ ℝ)
3425, 33eqeltrd 2911 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)
35 oveq2 7156 . . . . . . . . 9 (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) + 𝑥) = ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))))
3635eleq1d 2895 . . . . . . . 8 (𝑥 = (𝑦 − (i · 𝑧)) → (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ))
37 oveq2 7156 . . . . . . . . . 10 (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) − 𝑥) = ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))))
3837oveq2d 7164 . . . . . . . . 9 (𝑥 = (𝑦 − (i · 𝑧)) → (i · ((𝑦 + (i · 𝑧)) − 𝑥)) = (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))))
3938eleq1d 2895 . . . . . . . 8 (𝑥 = (𝑦 − (i · 𝑧)) → ((i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ))
4036, 39anbi12d 632 . . . . . . 7 (𝑥 = (𝑦 − (i · 𝑧)) → ((((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)))
4140rspcev 3621 . . . . . 6 (((𝑦 − (i · 𝑧)) ∈ ℂ ∧ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)) → ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
428, 15, 34, 41syl12anc 834 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
43 oveq1 7155 . . . . . . . 8 (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴 + 𝑥) = ((𝑦 + (i · 𝑧)) + 𝑥))
4443eleq1d 2895 . . . . . . 7 (𝐴 = (𝑦 + (i · 𝑧)) → ((𝐴 + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ))
45 oveq1 7155 . . . . . . . . 9 (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴𝑥) = ((𝑦 + (i · 𝑧)) − 𝑥))
4645oveq2d 7164 . . . . . . . 8 (𝐴 = (𝑦 + (i · 𝑧)) → (i · (𝐴𝑥)) = (i · ((𝑦 + (i · 𝑧)) − 𝑥)))
4746eleq1d 2895 . . . . . . 7 (𝐴 = (𝑦 + (i · 𝑧)) → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
4844, 47anbi12d 632 . . . . . 6 (𝐴 = (𝑦 + (i · 𝑧)) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)))
4948rexbidv 3295 . . . . 5 (𝐴 = (𝑦 + (i · 𝑧)) → (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)))
5042, 49syl5ibrcom 249 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
5150rexlimivv 3290 . . 3 (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
521, 51syl 17 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
53 an4 654 . . . 4 ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) ↔ (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)))
54 resubcl 10942 . . . . . . 7 (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ)
55 pnpcan 10917 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥𝑦))
56553expb 1115 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥𝑦))
5756eleq1d 2895 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ ↔ (𝑥𝑦) ∈ ℝ))
5854, 57syl5ib 246 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → (𝑥𝑦) ∈ ℝ))
59 resubcl 10942 . . . . . . . 8 (((i · (𝐴𝑦)) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ)
6059ancoms 461 . . . . . . 7 (((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ)
613a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → i ∈ ℂ)
62 subcl 10877 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴𝑦) ∈ ℂ)
6362adantrl 714 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴𝑦) ∈ ℂ)
64 subcl 10877 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴𝑥) ∈ ℂ)
6564adantrr 715 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴𝑥) ∈ ℂ)
6661, 63, 65subdid 11088 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i · ((𝐴𝑦) − (𝐴𝑥))) = ((i · (𝐴𝑦)) − (i · (𝐴𝑥))))
67 nnncan1 10914 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
68673com23 1121 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
69683expb 1115 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
7069oveq2d 7164 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i · ((𝐴𝑦) − (𝐴𝑥))) = (i · (𝑥𝑦)))
7166, 70eqtr3d 2856 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) = (i · (𝑥𝑦)))
7271eleq1d 2895 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ ↔ (i · (𝑥𝑦)) ∈ ℝ))
7360, 72syl5ib 246 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ) → (i · (𝑥𝑦)) ∈ ℝ))
7458, 73anim12d 610 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → ((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
75 rimul 11621 . . . . . 6 (((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ) → (𝑥𝑦) = 0)
7675a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ) → (𝑥𝑦) = 0))
77 subeq0 10904 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
7877biimpd 231 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 → 𝑥 = 𝑦))
7978adantl 484 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑥𝑦) = 0 → 𝑥 = 𝑦))
8074, 76, 793syld 60 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
8153, 80syl5bi 244 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
8281ralrimivva 3189 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
83 oveq2 7156 . . . . 5 (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦))
8483eleq1d 2895 . . . 4 (𝑥 = 𝑦 → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑦) ∈ ℝ))
85 oveq2 7156 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
8685oveq2d 7164 . . . . 5 (𝑥 = 𝑦 → (i · (𝐴𝑥)) = (i · (𝐴𝑦)))
8786eleq1d 2895 . . . 4 (𝑥 = 𝑦 → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · (𝐴𝑦)) ∈ ℝ))
8884, 87anbi12d 632 . . 3 (𝑥 = 𝑦 → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)))
8988reu4 3720 . 2 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦)))
9052, 82, 89sylanbrc 585 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wral 3136  wrex 3137  ∃!wreu 3138  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  1c1 10530  ici 10531   + caddc 10532   · cmul 10534  cmin 10862  -cneg 10863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290
This theorem is referenced by:  cjth  14454  cjf  14455  remim  14468
  Copyright terms: Public domain W3C validator