MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cju Structured version   Visualization version   GIF version

Theorem cju 12195
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cju (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cju
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11198 . . 3 (𝐴 ∈ ℂ → ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝐴 = (𝑦 + (i · 𝑧)))
2 recn 11187 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
3 ax-icn 11156 . . . . . . . 8 i ∈ ℂ
4 recn 11187 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
5 mulcl 11181 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ)
63, 4, 5sylancr 588 . . . . . . 7 (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ)
7 subcl 11446 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (i · 𝑧) ∈ ℂ) → (𝑦 − (i · 𝑧)) ∈ ℂ)
82, 6, 7syl2an 597 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 − (i · 𝑧)) ∈ ℂ)
92adantr 482 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
106adantl 483 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · 𝑧) ∈ ℂ)
119, 10, 9ppncand 11598 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) = (𝑦 + 𝑦))
12 readdcl 11180 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ)
1312anidms 568 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 𝑦) ∈ ℝ)
1413adantr 482 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ)
1511, 14eqeltrd 2834 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ)
169, 10, 10pnncand 11597 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = ((i · 𝑧) + (i · 𝑧)))
173a1i 11 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → i ∈ ℂ)
184adantl 483 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
1917, 18, 18adddid 11225 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · (𝑧 + 𝑧)) = ((i · 𝑧) + (i · 𝑧)))
2016, 19eqtr4d 2776 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = (i · (𝑧 + 𝑧)))
2120oveq2d 7412 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) = (i · (i · (𝑧 + 𝑧))))
2218, 18addcld 11220 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℂ)
23 mulass 11185 . . . . . . . . 9 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (𝑧 + 𝑧) ∈ ℂ) → ((i · i) · (𝑧 + 𝑧)) = (i · (i · (𝑧 + 𝑧))))
243, 3, 22, 23mp3an12i 1466 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) = (i · (i · (𝑧 + 𝑧))))
2521, 24eqtr4d 2776 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) = ((i · i) · (𝑧 + 𝑧)))
26 ixi 11830 . . . . . . . . 9 (i · i) = -1
27 1re 11201 . . . . . . . . . 10 1 ∈ ℝ
2827renegcli 11508 . . . . . . . . 9 -1 ∈ ℝ
2926, 28eqeltri 2830 . . . . . . . 8 (i · i) ∈ ℝ
30 simpr 486 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3130, 30readdcld 11230 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℝ)
32 remulcl 11182 . . . . . . . 8 (((i · i) ∈ ℝ ∧ (𝑧 + 𝑧) ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) ∈ ℝ)
3329, 31, 32sylancr 588 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) ∈ ℝ)
3425, 33eqeltrd 2834 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)
35 oveq2 7404 . . . . . . . . 9 (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) + 𝑥) = ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))))
3635eleq1d 2819 . . . . . . . 8 (𝑥 = (𝑦 − (i · 𝑧)) → (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ))
37 oveq2 7404 . . . . . . . . . 10 (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) − 𝑥) = ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))))
3837oveq2d 7412 . . . . . . . . 9 (𝑥 = (𝑦 − (i · 𝑧)) → (i · ((𝑦 + (i · 𝑧)) − 𝑥)) = (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))))
3938eleq1d 2819 . . . . . . . 8 (𝑥 = (𝑦 − (i · 𝑧)) → ((i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ))
4036, 39anbi12d 632 . . . . . . 7 (𝑥 = (𝑦 − (i · 𝑧)) → ((((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)))
4140rspcev 3611 . . . . . 6 (((𝑦 − (i · 𝑧)) ∈ ℂ ∧ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)) → ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
428, 15, 34, 41syl12anc 836 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
43 oveq1 7403 . . . . . . . 8 (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴 + 𝑥) = ((𝑦 + (i · 𝑧)) + 𝑥))
4443eleq1d 2819 . . . . . . 7 (𝐴 = (𝑦 + (i · 𝑧)) → ((𝐴 + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ))
45 oveq1 7403 . . . . . . . . 9 (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴𝑥) = ((𝑦 + (i · 𝑧)) − 𝑥))
4645oveq2d 7412 . . . . . . . 8 (𝐴 = (𝑦 + (i · 𝑧)) → (i · (𝐴𝑥)) = (i · ((𝑦 + (i · 𝑧)) − 𝑥)))
4746eleq1d 2819 . . . . . . 7 (𝐴 = (𝑦 + (i · 𝑧)) → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
4844, 47anbi12d 632 . . . . . 6 (𝐴 = (𝑦 + (i · 𝑧)) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)))
4948rexbidv 3179 . . . . 5 (𝐴 = (𝑦 + (i · 𝑧)) → (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)))
5042, 49syl5ibrcom 246 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
5150rexlimivv 3200 . . 3 (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
521, 51syl 17 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
53 an4 655 . . . 4 ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) ↔ (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)))
54 resubcl 11511 . . . . . . 7 (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ)
55 pnpcan 11486 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥𝑦))
56553expb 1121 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥𝑦))
5756eleq1d 2819 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ ↔ (𝑥𝑦) ∈ ℝ))
5854, 57imbitrid 243 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → (𝑥𝑦) ∈ ℝ))
59 resubcl 11511 . . . . . . . 8 (((i · (𝐴𝑦)) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ)
6059ancoms 460 . . . . . . 7 (((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ)
613a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → i ∈ ℂ)
62 subcl 11446 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴𝑦) ∈ ℂ)
6362adantrl 715 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴𝑦) ∈ ℂ)
64 subcl 11446 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴𝑥) ∈ ℂ)
6564adantrr 716 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴𝑥) ∈ ℂ)
6661, 63, 65subdid 11657 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i · ((𝐴𝑦) − (𝐴𝑥))) = ((i · (𝐴𝑦)) − (i · (𝐴𝑥))))
67 nnncan1 11483 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
68673com23 1127 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
69683expb 1121 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
7069oveq2d 7412 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i · ((𝐴𝑦) − (𝐴𝑥))) = (i · (𝑥𝑦)))
7166, 70eqtr3d 2775 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) = (i · (𝑥𝑦)))
7271eleq1d 2819 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ ↔ (i · (𝑥𝑦)) ∈ ℝ))
7360, 72imbitrid 243 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ) → (i · (𝑥𝑦)) ∈ ℝ))
7458, 73anim12d 610 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → ((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
75 rimul 12190 . . . . . 6 (((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ) → (𝑥𝑦) = 0)
7675a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ) → (𝑥𝑦) = 0))
77 subeq0 11473 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
7877biimpd 228 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 → 𝑥 = 𝑦))
7978adantl 483 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑥𝑦) = 0 → 𝑥 = 𝑦))
8074, 76, 793syld 60 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
8153, 80biimtrid 241 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
8281ralrimivva 3201 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
83 oveq2 7404 . . . . 5 (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦))
8483eleq1d 2819 . . . 4 (𝑥 = 𝑦 → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑦) ∈ ℝ))
85 oveq2 7404 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
8685oveq2d 7412 . . . . 5 (𝑥 = 𝑦 → (i · (𝐴𝑥)) = (i · (𝐴𝑦)))
8786eleq1d 2819 . . . 4 (𝑥 = 𝑦 → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · (𝐴𝑦)) ∈ ℝ))
8884, 87anbi12d 632 . . 3 (𝑥 = 𝑦 → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)))
8988reu4 3725 . 2 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦)))
9052, 82, 89sylanbrc 584 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  wrex 3071  ∃!wreu 3375  (class class class)co 7396  cc 11095  cr 11096  0cc0 11097  1c1 11098  ici 11099   + caddc 11100   · cmul 11102  cmin 11431  -cneg 11432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859
This theorem is referenced by:  cjth  15037  cjf  15038  remim  15051
  Copyright terms: Public domain W3C validator