Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-mul02 | Structured version Visualization version GIF version |
Description: mul02 11258 without ax-mulcom 11040. See https://github.com/icecream17/Stuff/blob/main/math/0A%3D0.md 11040 for an outline. (Contributed by SN, 30-Jun-2024.) |
Ref | Expression |
---|---|
sn-mul02 | ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 11077 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
2 | 0cnd 11073 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 0 ∈ ℂ) | |
3 | recn 11066 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
4 | 3 | adantr 482 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ) |
5 | ax-icn 11035 | . . . . . . . 8 ⊢ i ∈ ℂ | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ) |
7 | recn 11066 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
8 | 7 | adantl 483 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
9 | 6, 8 | mulcld 11100 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ) |
10 | 2, 4, 9 | adddid 11104 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = ((0 · 𝑥) + (0 · (i · 𝑦)))) |
11 | remul02 40699 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (0 · 𝑥) = 0) | |
12 | 11 | adantr 482 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · 𝑥) = 0) |
13 | sn-0tie0 40732 | . . . . . . . . 9 ⊢ (0 · i) = 0 | |
14 | 13 | oveq1i 7351 | . . . . . . . 8 ⊢ ((0 · i) · 𝑦) = (0 · 𝑦) |
15 | 2, 6, 8 | mulassd 11103 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 · i) · 𝑦) = (0 · (i · 𝑦))) |
16 | remul02 40699 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (0 · 𝑦) = 0) | |
17 | 16 | adantl 483 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · 𝑦) = 0) |
18 | 14, 15, 17 | 3eqtr3a 2801 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (i · 𝑦)) = 0) |
19 | 12, 18 | oveq12d 7359 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 · 𝑥) + (0 · (i · 𝑦))) = (0 + 0)) |
20 | sn-00id 40695 | . . . . . 6 ⊢ (0 + 0) = 0 | |
21 | 19, 20 | eqtrdi 2793 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 · 𝑥) + (0 · (i · 𝑦))) = 0) |
22 | 10, 21 | eqtrd 2777 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 · (𝑥 + (i · 𝑦))) = 0) |
23 | oveq2 7349 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = (0 · (𝑥 + (i · 𝑦)))) | |
24 | 23 | eqeq1d 2739 | . . . 4 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((0 · 𝐴) = 0 ↔ (0 · (𝑥 + (i · 𝑦))) = 0)) |
25 | 22, 24 | syl5ibrcom 247 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0)) |
26 | 25 | rexlimivv 3193 | . 2 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 · 𝐴) = 0) |
27 | 1, 26 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 (class class class)co 7341 ℂcc 10974 ℝcr 10975 0cc0 10976 ici 10978 + caddc 10979 · cmul 10981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-po 5536 df-so 5537 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-ltxr 11119 df-2 12141 df-3 12142 df-resub 40660 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |