![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > creui | Structured version Visualization version GIF version |
Description: The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
creui | ⊢ (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 11256 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤))) | |
2 | simpr 484 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) | |
3 | eqcom 2742 | . . . . . . . . . 10 ⊢ ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤))) | |
4 | cru 12256 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | |
5 | 4 | ancoms 458 | . . . . . . . . . 10 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
6 | 3, 5 | bitrid 283 | . . . . . . . . 9 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
7 | 6 | anass1rs 655 | . . . . . . . 8 ⊢ ((((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
8 | 7 | rexbidva 3175 | . . . . . . 7 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
9 | biidd 262 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑦 = 𝑤 ↔ 𝑦 = 𝑤)) | |
10 | 9 | ceqsrexv 3655 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ → (∃𝑥 ∈ ℝ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ↔ 𝑦 = 𝑤)) |
11 | 10 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑥 ∈ ℝ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ↔ 𝑦 = 𝑤)) |
12 | 8, 11 | bitrd 279 | . . . . . 6 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑦 = 𝑤)) |
13 | 12 | ralrimiva 3144 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∀𝑦 ∈ ℝ (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑦 = 𝑤)) |
14 | reu6i 3737 | . . . . 5 ⊢ ((𝑤 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑦 = 𝑤)) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) | |
15 | 2, 13, 14 | syl2anc 584 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) |
16 | eqeq1 2739 | . . . . . 6 ⊢ (𝐴 = (𝑧 + (i · 𝑤)) → (𝐴 = (𝑥 + (i · 𝑦)) ↔ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))) | |
17 | 16 | rexbidv 3177 | . . . . 5 ⊢ (𝐴 = (𝑧 + (i · 𝑤)) → (∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))) |
18 | 17 | reubidv 3396 | . . . 4 ⊢ (𝐴 = (𝑧 + (i · 𝑤)) → (∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))) |
19 | 15, 18 | syl5ibrcom 247 | . . 3 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))) |
20 | 19 | rexlimivv 3199 | . 2 ⊢ (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
21 | 1, 20 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∃!wreu 3376 (class class class)co 7431 ℂcc 11151 ℝcr 11152 ici 11155 + caddc 11156 · cmul 11158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |