Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > creui | Structured version Visualization version GIF version |
Description: The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
creui | ⊢ (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 10830 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤))) | |
2 | simpr 488 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) | |
3 | eqcom 2744 | . . . . . . . . . 10 ⊢ ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤))) | |
4 | cru 11822 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | |
5 | 4 | ancoms 462 | . . . . . . . . . 10 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
6 | 3, 5 | syl5bb 286 | . . . . . . . . 9 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
7 | 6 | anass1rs 655 | . . . . . . . 8 ⊢ ((((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
8 | 7 | rexbidva 3215 | . . . . . . 7 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
9 | biidd 265 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑦 = 𝑤 ↔ 𝑦 = 𝑤)) | |
10 | 9 | ceqsrexv 3563 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ → (∃𝑥 ∈ ℝ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ↔ 𝑦 = 𝑤)) |
11 | 10 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑥 ∈ ℝ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ↔ 𝑦 = 𝑤)) |
12 | 8, 11 | bitrd 282 | . . . . . 6 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑦 = 𝑤)) |
13 | 12 | ralrimiva 3105 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∀𝑦 ∈ ℝ (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑦 = 𝑤)) |
14 | reu6i 3641 | . . . . 5 ⊢ ((𝑤 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑦 = 𝑤)) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) | |
15 | 2, 13, 14 | syl2anc 587 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) |
16 | eqeq1 2741 | . . . . . 6 ⊢ (𝐴 = (𝑧 + (i · 𝑤)) → (𝐴 = (𝑥 + (i · 𝑦)) ↔ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))) | |
17 | 16 | rexbidv 3216 | . . . . 5 ⊢ (𝐴 = (𝑧 + (i · 𝑤)) → (∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))) |
18 | 17 | reubidv 3301 | . . . 4 ⊢ (𝐴 = (𝑧 + (i · 𝑤)) → (∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))) |
19 | 15, 18 | syl5ibrcom 250 | . . 3 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))) |
20 | 19 | rexlimivv 3211 | . 2 ⊢ (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
21 | 1, 20 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ∃!wreu 3063 (class class class)co 7213 ℂcc 10727 ℝcr 10728 ici 10731 + caddc 10732 · cmul 10734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |