| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > creui | Structured version Visualization version GIF version | ||
| Description: The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| creui | ⊢ (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre 11106 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤))) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) | |
| 3 | eqcom 2738 | . . . . . . . . . 10 ⊢ ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤))) | |
| 4 | cru 12114 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | |
| 5 | 4 | ancoms 458 | . . . . . . . . . 10 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 + (i · 𝑦)) = (𝑧 + (i · 𝑤)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 6 | 3, 5 | bitrid 283 | . . . . . . . . 9 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 7 | 6 | anass1rs 655 | . . . . . . . 8 ⊢ ((((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → ((𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 8 | 7 | rexbidva 3154 | . . . . . . 7 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
| 9 | biidd 262 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑦 = 𝑤 ↔ 𝑦 = 𝑤)) | |
| 10 | 9 | ceqsrexv 3610 | . . . . . . . 8 ⊢ (𝑧 ∈ ℝ → (∃𝑥 ∈ ℝ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ↔ 𝑦 = 𝑤)) |
| 11 | 10 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑥 ∈ ℝ (𝑥 = 𝑧 ∧ 𝑦 = 𝑤) ↔ 𝑦 = 𝑤)) |
| 12 | 8, 11 | bitrd 279 | . . . . . 6 ⊢ (((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑦 = 𝑤)) |
| 13 | 12 | ralrimiva 3124 | . . . . 5 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∀𝑦 ∈ ℝ (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑦 = 𝑤)) |
| 14 | reu6i 3687 | . . . . 5 ⊢ ((𝑤 ∈ ℝ ∧ ∀𝑦 ∈ ℝ (∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)) ↔ 𝑦 = 𝑤)) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) | |
| 15 | 2, 13, 14 | syl2anc 584 | . . . 4 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦))) |
| 16 | eqeq1 2735 | . . . . . 6 ⊢ (𝐴 = (𝑧 + (i · 𝑤)) → (𝐴 = (𝑥 + (i · 𝑦)) ↔ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))) | |
| 17 | 16 | rexbidv 3156 | . . . . 5 ⊢ (𝐴 = (𝑧 + (i · 𝑤)) → (∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))) |
| 18 | 17 | reubidv 3362 | . . . 4 ⊢ (𝐴 = (𝑧 + (i · 𝑤)) → (∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) ↔ ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑧 + (i · 𝑤)) = (𝑥 + (i · 𝑦)))) |
| 19 | 15, 18 | syl5ibrcom 247 | . . 3 ⊢ ((𝑧 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))) |
| 20 | 19 | rexlimivv 3174 | . 2 ⊢ (∃𝑧 ∈ ℝ ∃𝑤 ∈ ℝ 𝐴 = (𝑧 + (i · 𝑤)) → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| 21 | 1, 20 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∃!wreu 3344 (class class class)co 7346 ℂcc 11001 ℝcr 11002 ici 11005 + caddc 11006 · cmul 11008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |