![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq12i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
Ref | Expression |
---|---|
coeq12i.1 | ⊢ 𝐴 = 𝐵 |
coeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
coeq12i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | coeq1i 5852 | . 2 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
3 | coeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | coeq2i 5853 | . 2 ⊢ (𝐵 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
5 | 2, 4 | eqtri 2754 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∘ ccom 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-in 3950 df-ss 3960 df-br 5142 df-opab 5204 df-co 5678 |
This theorem is referenced by: madetsumid 22314 mdetleib2 22441 imsval 30443 pjcmul1i 31959 coprprop 32426 cotrcltrcl 43033 brtrclfv2 43035 clsneif1o 43412 |
Copyright terms: Public domain | W3C validator |