![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq12i | Structured version Visualization version GIF version |
Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
Ref | Expression |
---|---|
coeq12i.1 | ⊢ 𝐴 = 𝐵 |
coeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
coeq12i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | coeq1i 5884 | . 2 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
3 | coeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | coeq2i 5885 | . 2 ⊢ (𝐵 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
5 | 2, 4 | eqtri 2768 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 df-co 5709 |
This theorem is referenced by: madetsumid 22488 mdetleib2 22615 imsval 30717 pjcmul1i 32233 coprprop 32711 cotrcltrcl 43687 brtrclfv2 43689 clsneif1o 44066 |
Copyright terms: Public domain | W3C validator |