| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
| Ref | Expression |
|---|---|
| coeq12i.1 | ⊢ 𝐴 = 𝐵 |
| coeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| coeq12i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | coeq1i 5798 | . 2 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| 3 | coeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | coeq2i 5799 | . 2 ⊢ (𝐵 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
| 5 | 2, 4 | eqtri 2754 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-br 5090 df-opab 5152 df-co 5623 |
| This theorem is referenced by: madetsumid 22376 mdetleib2 22503 imsval 30665 pjcmul1i 32181 coprprop 32680 cotrcltrcl 43766 brtrclfv2 43768 clsneif1o 44145 cofuoppf 49190 |
| Copyright terms: Public domain | W3C validator |