| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq12i | Structured version Visualization version GIF version | ||
| Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.) |
| Ref | Expression |
|---|---|
| coeq12i.1 | ⊢ 𝐴 = 𝐵 |
| coeq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| coeq12i | ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | coeq1i 5826 | . 2 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐶) |
| 3 | coeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | coeq2i 5827 | . 2 ⊢ (𝐵 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
| 5 | 2, 4 | eqtri 2753 | 1 ⊢ (𝐴 ∘ 𝐶) = (𝐵 ∘ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-br 5111 df-opab 5173 df-co 5650 |
| This theorem is referenced by: madetsumid 22355 mdetleib2 22482 imsval 30621 pjcmul1i 32137 coprprop 32629 cotrcltrcl 43721 brtrclfv2 43723 clsneif1o 44100 cofuoppf 49143 |
| Copyright terms: Public domain | W3C validator |