MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeq12i Structured version   Visualization version   GIF version

Theorem coeq12i 5761
Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
Hypotheses
Ref Expression
coeq12i.1 𝐴 = 𝐵
coeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
coeq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem coeq12i
StepHypRef Expression
1 coeq12i.1 . . 3 𝐴 = 𝐵
21coeq1i 5757 . 2 (𝐴𝐶) = (𝐵𝐶)
3 coeq12i.2 . . 3 𝐶 = 𝐷
43coeq2i 5758 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2766 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-opab 5133  df-co 5589
This theorem is referenced by:  madetsumid  21518  mdetleib2  21645  imsval  28948  pjcmul1i  30464  coprprop  30934  cotrcltrcl  41222  brtrclfv2  41224  clsneif1o  41603
  Copyright terms: Public domain W3C validator