MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeq12i Structured version   Visualization version   GIF version

Theorem coeq12i 5817
Description: Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
Hypotheses
Ref Expression
coeq12i.1 𝐴 = 𝐵
coeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
coeq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem coeq12i
StepHypRef Expression
1 coeq12i.1 . . 3 𝐴 = 𝐵
21coeq1i 5813 . 2 (𝐴𝐶) = (𝐵𝐶)
3 coeq12i.2 . . 3 𝐶 = 𝐷
43coeq2i 5814 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2752 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccom 5635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ss 3928  df-br 5103  df-opab 5165  df-co 5640
This theorem is referenced by:  madetsumid  22324  mdetleib2  22451  imsval  30587  pjcmul1i  32103  coprprop  32595  cotrcltrcl  43687  brtrclfv2  43689  clsneif1o  44066  cofuoppf  49112
  Copyright terms: Public domain W3C validator