Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneif1o Structured version   Visualization version   GIF version

Theorem clsneif1o 40642
 Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the operator is a one-to-one, onto mapping. (Contributed by RP, 5-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneif1o (𝜑𝐻:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐾(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem clsneif1o
StepHypRef Expression
1 clsnei.d . . . 4 𝐷 = (𝑃𝐵)
2 clsnei.h . . . 4 𝐻 = (𝐹𝐷)
3 clsnei.r . . . 4 (𝜑𝐾𝐻𝑁)
41, 2, 3clsneibex 40640 . . 3 (𝜑𝐵 ∈ V)
5 clsnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
6 pwexg 5260 . . . . . 6 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
76adantl 485 . . . . 5 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
8 simpr 488 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
9 eqid 2824 . . . . 5 (𝒫 𝐵𝑂𝐵) = (𝒫 𝐵𝑂𝐵)
105, 7, 8, 9fsovf1od 40550 . . . 4 ((𝜑𝐵 ∈ V) → (𝒫 𝐵𝑂𝐵):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
11 clsnei.p . . . . 5 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
12 eqid 2824 . . . . 5 (𝑃𝐵) = (𝑃𝐵)
1311, 12, 8dssmapf1od 40555 . . . 4 ((𝜑𝐵 ∈ V) → (𝑃𝐵):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
14 f1oco 6618 . . . 4 (((𝒫 𝐵𝑂𝐵):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ∧ (𝑃𝐵):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵)) → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵)):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
1510, 13, 14syl2anc 587 . . 3 ((𝜑𝐵 ∈ V) → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵)):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
164, 15mpdan 686 . 2 (𝜑 → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵)):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
17 clsnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
1817, 1coeq12i 5715 . . . 4 (𝐹𝐷) = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵))
192, 18eqtri 2847 . . 3 𝐻 = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵))
20 f1oeq1 6585 . . 3 (𝐻 = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵)) → (𝐻:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ↔ ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵)):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵)))
2119, 20ax-mp 5 . 2 (𝐻:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ↔ ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵)):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
2216, 21sylibr 237 1 (𝜑𝐻:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  {crab 3136  Vcvv 3479   ∖ cdif 3915  𝒫 cpw 4520   class class class wbr 5047   ↦ cmpt 5127   ∘ ccom 5540  –1-1-onto→wf1o 6335  ‘cfv 6336  (class class class)co 7138   ∈ cmpo 7140   ↑m cmap 8389 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-1st 7672  df-2nd 7673  df-map 8391 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator