![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneif1o | Structured version Visualization version GIF version |
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the operator is a one-to-one, onto mapping. (Contributed by RP, 5-Jun-2021.) |
Ref | Expression |
---|---|
clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
Ref | Expression |
---|---|
clsneif1o | ⊢ (𝜑 → 𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsnei.d | . . . 4 ⊢ 𝐷 = (𝑃‘𝐵) | |
2 | clsnei.h | . . . 4 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
3 | clsnei.r | . . . 4 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
4 | 1, 2, 3 | clsneibex 42853 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
5 | clsnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
6 | pwexg 5377 | . . . . . 6 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
7 | 6 | adantl 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝒫 𝐵 ∈ V) |
8 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
9 | eqid 2733 | . . . . 5 ⊢ (𝒫 𝐵𝑂𝐵) = (𝒫 𝐵𝑂𝐵) | |
10 | 5, 7, 8, 9 | fsovf1od 42767 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝒫 𝐵𝑂𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
11 | clsnei.p | . . . . 5 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
12 | eqid 2733 | . . . . 5 ⊢ (𝑃‘𝐵) = (𝑃‘𝐵) | |
13 | 11, 12, 8 | dssmapf1od 42772 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝑃‘𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
14 | f1oco 6857 | . . . 4 ⊢ (((𝒫 𝐵𝑂𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ (𝑃‘𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | |
15 | 10, 13, 14 | syl2anc 585 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
16 | 4, 15 | mpdan 686 | . 2 ⊢ (𝜑 → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
17 | clsnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
18 | 17, 1 | coeq12i 5864 | . . . 4 ⊢ (𝐹 ∘ 𝐷) = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)) |
19 | 2, 18 | eqtri 2761 | . . 3 ⊢ 𝐻 = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)) |
20 | f1oeq1 6822 | . . 3 ⊢ (𝐻 = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)) → (𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵))) | |
21 | 19, 20 | ax-mp 5 | . 2 ⊢ (𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
22 | 16, 21 | sylibr 233 | 1 ⊢ (𝜑 → 𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 ∖ cdif 3946 𝒫 cpw 4603 class class class wbr 5149 ↦ cmpt 5232 ∘ ccom 5681 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7409 ∈ cmpo 7411 ↑m cmap 8820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-map 8822 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |