Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneif1o Structured version   Visualization version   GIF version

Theorem clsneif1o 41714
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the operator is a one-to-one, onto mapping. (Contributed by RP, 5-Jun-2021.)
Hypotheses
Ref Expression
clsnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
clsnei.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
clsnei.d 𝐷 = (𝑃𝐵)
clsnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
clsnei.h 𝐻 = (𝐹𝐷)
clsnei.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneif1o (𝜑𝐻:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐾(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem clsneif1o
StepHypRef Expression
1 clsnei.d . . . 4 𝐷 = (𝑃𝐵)
2 clsnei.h . . . 4 𝐻 = (𝐹𝐷)
3 clsnei.r . . . 4 (𝜑𝐾𝐻𝑁)
41, 2, 3clsneibex 41712 . . 3 (𝜑𝐵 ∈ V)
5 clsnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
6 pwexg 5301 . . . . . 6 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
76adantl 482 . . . . 5 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
8 simpr 485 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
9 eqid 2738 . . . . 5 (𝒫 𝐵𝑂𝐵) = (𝒫 𝐵𝑂𝐵)
105, 7, 8, 9fsovf1od 41624 . . . 4 ((𝜑𝐵 ∈ V) → (𝒫 𝐵𝑂𝐵):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
11 clsnei.p . . . . 5 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
12 eqid 2738 . . . . 5 (𝑃𝐵) = (𝑃𝐵)
1311, 12, 8dssmapf1od 41629 . . . 4 ((𝜑𝐵 ∈ V) → (𝑃𝐵):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
14 f1oco 6739 . . . 4 (((𝒫 𝐵𝑂𝐵):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ∧ (𝑃𝐵):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵)) → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵)):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
1510, 13, 14syl2anc 584 . . 3 ((𝜑𝐵 ∈ V) → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵)):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
164, 15mpdan 684 . 2 (𝜑 → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵)):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
17 clsnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
1817, 1coeq12i 5772 . . . 4 (𝐹𝐷) = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵))
192, 18eqtri 2766 . . 3 𝐻 = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵))
20 f1oeq1 6704 . . 3 (𝐻 = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵)) → (𝐻:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ↔ ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵)):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵)))
2119, 20ax-mp 5 . 2 (𝐻:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ↔ ((𝒫 𝐵𝑂𝐵) ∘ (𝑃𝐵)):(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
2216, 21sylibr 233 1 (𝜑𝐻:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cdif 3884  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  ccom 5593  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator