Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneif1o | Structured version Visualization version GIF version |
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the operator is a one-to-one, onto mapping. (Contributed by RP, 5-Jun-2021.) |
Ref | Expression |
---|---|
clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
Ref | Expression |
---|---|
clsneif1o | ⊢ (𝜑 → 𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsnei.d | . . . 4 ⊢ 𝐷 = (𝑃‘𝐵) | |
2 | clsnei.h | . . . 4 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
3 | clsnei.r | . . . 4 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
4 | 1, 2, 3 | clsneibex 41665 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
5 | clsnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
6 | pwexg 5304 | . . . . . 6 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝒫 𝐵 ∈ V) |
8 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
9 | eqid 2739 | . . . . 5 ⊢ (𝒫 𝐵𝑂𝐵) = (𝒫 𝐵𝑂𝐵) | |
10 | 5, 7, 8, 9 | fsovf1od 41577 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝒫 𝐵𝑂𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
11 | clsnei.p | . . . . 5 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
12 | eqid 2739 | . . . . 5 ⊢ (𝑃‘𝐵) = (𝑃‘𝐵) | |
13 | 11, 12, 8 | dssmapf1od 41582 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝑃‘𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
14 | f1oco 6734 | . . . 4 ⊢ (((𝒫 𝐵𝑂𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ (𝑃‘𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | |
15 | 10, 13, 14 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
16 | 4, 15 | mpdan 683 | . 2 ⊢ (𝜑 → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
17 | clsnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
18 | 17, 1 | coeq12i 5769 | . . . 4 ⊢ (𝐹 ∘ 𝐷) = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)) |
19 | 2, 18 | eqtri 2767 | . . 3 ⊢ 𝐻 = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)) |
20 | f1oeq1 6700 | . . 3 ⊢ (𝐻 = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)) → (𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵))) | |
21 | 19, 20 | ax-mp 5 | . 2 ⊢ (𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
22 | 16, 21 | sylibr 233 | 1 ⊢ (𝜑 → 𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {crab 3069 Vcvv 3430 ∖ cdif 3888 𝒫 cpw 4538 class class class wbr 5078 ↦ cmpt 5161 ∘ ccom 5592 –1-1-onto→wf1o 6429 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 ↑m cmap 8589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-map 8591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |