![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneif1o | Structured version Visualization version GIF version |
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the operator is a one-to-one, onto mapping. (Contributed by RP, 5-Jun-2021.) |
Ref | Expression |
---|---|
clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
Ref | Expression |
---|---|
clsneif1o | ⊢ (𝜑 → 𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsnei.d | . . . 4 ⊢ 𝐷 = (𝑃‘𝐵) | |
2 | clsnei.h | . . . 4 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
3 | clsnei.r | . . . 4 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
4 | 1, 2, 3 | clsneibex 43429 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
5 | clsnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
6 | pwexg 5369 | . . . . . 6 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝒫 𝐵 ∈ V) |
8 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
9 | eqid 2726 | . . . . 5 ⊢ (𝒫 𝐵𝑂𝐵) = (𝒫 𝐵𝑂𝐵) | |
10 | 5, 7, 8, 9 | fsovf1od 43343 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝒫 𝐵𝑂𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
11 | clsnei.p | . . . . 5 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
12 | eqid 2726 | . . . . 5 ⊢ (𝑃‘𝐵) = (𝑃‘𝐵) | |
13 | 11, 12, 8 | dssmapf1od 43348 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝑃‘𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
14 | f1oco 6850 | . . . 4 ⊢ (((𝒫 𝐵𝑂𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ (𝑃‘𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | |
15 | 10, 13, 14 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
16 | 4, 15 | mpdan 684 | . 2 ⊢ (𝜑 → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
17 | clsnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
18 | 17, 1 | coeq12i 5857 | . . . 4 ⊢ (𝐹 ∘ 𝐷) = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)) |
19 | 2, 18 | eqtri 2754 | . . 3 ⊢ 𝐻 = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)) |
20 | f1oeq1 6815 | . . 3 ⊢ (𝐻 = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)) → (𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵))) | |
21 | 19, 20 | ax-mp 5 | . 2 ⊢ (𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
22 | 16, 21 | sylibr 233 | 1 ⊢ (𝜑 → 𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3426 Vcvv 3468 ∖ cdif 3940 𝒫 cpw 4597 class class class wbr 5141 ↦ cmpt 5224 ∘ ccom 5673 –1-1-onto→wf1o 6536 ‘cfv 6537 (class class class)co 7405 ∈ cmpo 7407 ↑m cmap 8822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-map 8824 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |