| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneif1o | Structured version Visualization version GIF version | ||
| Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then the operator is a one-to-one, onto mapping. (Contributed by RP, 5-Jun-2021.) |
| Ref | Expression |
|---|---|
| clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
| clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
| clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
| Ref | Expression |
|---|---|
| clsneif1o | ⊢ (𝜑 → 𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clsnei.d | . . . 4 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 2 | clsnei.h | . . . 4 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
| 3 | clsnei.r | . . . 4 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
| 4 | 1, 2, 3 | clsneibex 44134 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 5 | clsnei.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 6 | pwexg 5316 | . . . . . 6 ⊢ (𝐵 ∈ V → 𝒫 𝐵 ∈ V) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝒫 𝐵 ∈ V) |
| 8 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
| 9 | eqid 2731 | . . . . 5 ⊢ (𝒫 𝐵𝑂𝐵) = (𝒫 𝐵𝑂𝐵) | |
| 10 | 5, 7, 8, 9 | fsovf1od 44048 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝒫 𝐵𝑂𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 11 | clsnei.p | . . . . 5 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
| 12 | eqid 2731 | . . . . 5 ⊢ (𝑃‘𝐵) = (𝑃‘𝐵) | |
| 13 | 11, 12, 8 | dssmapf1od 44053 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → (𝑃‘𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 14 | f1oco 6786 | . . . 4 ⊢ (((𝒫 𝐵𝑂𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ (𝑃‘𝐵):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | |
| 15 | 10, 13, 14 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ V) → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 16 | 4, 15 | mpdan 687 | . 2 ⊢ (𝜑 → ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 17 | clsnei.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 18 | 17, 1 | coeq12i 5803 | . . . 4 ⊢ (𝐹 ∘ 𝐷) = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)) |
| 19 | 2, 18 | eqtri 2754 | . . 3 ⊢ 𝐻 = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)) |
| 20 | f1oeq1 6751 | . . 3 ⊢ (𝐻 = ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)) → (𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵))) | |
| 21 | 19, 20 | ax-mp 5 | . 2 ⊢ (𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ ((𝒫 𝐵𝑂𝐵) ∘ (𝑃‘𝐵)):(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 22 | 16, 21 | sylibr 234 | 1 ⊢ (𝜑 → 𝐻:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∖ cdif 3899 𝒫 cpw 4550 class class class wbr 5091 ↦ cmpt 5172 ∘ ccom 5620 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |