![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > madetsumid | Structured version Visualization version GIF version |
Description: The identity summand in the Leibniz' formula of a determinant for a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) |
Ref | Expression |
---|---|
madetsumid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
madetsumid.b | ⊢ 𝐵 = (Base‘𝐴) |
madetsumid.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
madetsumid.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
madetsumid.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
madetsumid.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
madetsumid | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6914 | . . . 4 ⊢ (𝑃 = ( I ↾ 𝑁) → ((𝑌 ∘ 𝑆)‘𝑃) = ((𝑌 ∘ 𝑆)‘( I ↾ 𝑁))) | |
2 | fveq1 6913 | . . . . . . 7 ⊢ (𝑃 = ( I ↾ 𝑁) → (𝑃‘𝑟) = (( I ↾ 𝑁)‘𝑟)) | |
3 | 2 | oveq1d 7453 | . . . . . 6 ⊢ (𝑃 = ( I ↾ 𝑁) → ((𝑃‘𝑟)𝑀𝑟) = ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)) |
4 | 3 | mpteq2dv 5253 | . . . . 5 ⊢ (𝑃 = ( I ↾ 𝑁) → (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)) = (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟))) |
5 | 4 | oveq2d 7454 | . . . 4 ⊢ (𝑃 = ( I ↾ 𝑁) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) |
6 | 1, 5 | oveq12d 7456 | . . 3 ⊢ (𝑃 = ( I ↾ 𝑁) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟))))) |
7 | 6 | 3ad2ant3 1136 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟))))) |
8 | madetsumid.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | madetsumid.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
10 | 8, 9 | matrcl 22441 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
11 | 10 | simpld 494 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
12 | madetsumid.y | . . . . . . . . . 10 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
13 | madetsumid.s | . . . . . . . . . 10 ⊢ 𝑆 = (pmSgn‘𝑁) | |
14 | 12, 13 | coeq12i 5881 | . . . . . . . . 9 ⊢ (𝑌 ∘ 𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑌 ∘ 𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))) |
16 | eqid 2737 | . . . . . . . . . 10 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
17 | 16 | symgid 19443 | . . . . . . . . 9 ⊢ (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁))) |
18 | 17 | adantl 481 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁))) |
19 | 15, 18 | fveq12d 6921 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁)))) |
20 | crngring 20272 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
21 | zrhpsgnmhm 21629 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅))) | |
22 | madetsumid.u | . . . . . . . . . . 11 ⊢ 𝑈 = (mulGrp‘𝑅) | |
23 | 22 | oveq2i 7449 | . . . . . . . . . 10 ⊢ ((SymGrp‘𝑁) MndHom 𝑈) = ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) |
24 | 21, 23 | eleqtrrdi 2852 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom 𝑈)) |
25 | 20, 24 | sylan 580 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom 𝑈)) |
26 | eqid 2737 | . . . . . . . . 9 ⊢ (0g‘(SymGrp‘𝑁)) = (0g‘(SymGrp‘𝑁)) | |
27 | eqid 2737 | . . . . . . . . . 10 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
28 | 22, 27 | ringidval 20210 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (0g‘𝑈) |
29 | 26, 28 | mhm0 18829 | . . . . . . . 8 ⊢ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom 𝑈) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = (1r‘𝑅)) |
30 | 25, 29 | syl 17 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = (1r‘𝑅)) |
31 | 19, 30 | eqtrd 2777 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) = (1r‘𝑅)) |
32 | fvresi 7200 | . . . . . . . . . 10 ⊢ (𝑟 ∈ 𝑁 → (( I ↾ 𝑁)‘𝑟) = 𝑟) | |
33 | 32 | adantl 481 | . . . . . . . . 9 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑟 ∈ 𝑁) → (( I ↾ 𝑁)‘𝑟) = 𝑟) |
34 | 33 | oveq1d 7453 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑟 ∈ 𝑁) → ((( I ↾ 𝑁)‘𝑟)𝑀𝑟) = (𝑟𝑀𝑟)) |
35 | 34 | mpteq2dva 5251 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)) = (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) |
36 | 35 | oveq2d 7454 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
37 | 31, 36 | oveq12d 7456 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) = ((1r‘𝑅) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))))) |
38 | 11, 37 | sylan2 593 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) = ((1r‘𝑅) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))))) |
39 | 8, 9, 22 | matgsumcl 22491 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) |
40 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
41 | madetsumid.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
42 | 40, 41, 27 | ringlidm 20292 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) → ((1r‘𝑅) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
43 | 20, 39, 42 | syl2an2r 685 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((1r‘𝑅) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
44 | 38, 43 | eqtrd 2777 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
45 | 44 | 3adant3 1133 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
46 | 7, 45 | eqtrd 2777 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ↦ cmpt 5234 I cid 5586 ↾ cres 5695 ∘ ccom 5697 ‘cfv 6569 (class class class)co 7438 Fincfn 8993 Basecbs 17254 .rcmulr 17308 0gc0g 17495 Σg cgsu 17496 MndHom cmhm 18816 SymGrpcsymg 19410 pmSgncpsgn 19531 mulGrpcmgp 20161 1rcur 20208 Ringcrg 20260 CRingccrg 20261 ℤRHomczrh 21537 Mat cmat 22436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-addf 11241 ax-mulf 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-ot 4643 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-supp 8194 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-map 8876 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fsupp 9409 df-sup 9489 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-xnn0 12607 df-z 12621 df-dec 12741 df-uz 12886 df-rp 13042 df-fz 13554 df-fzo 13701 df-seq 14049 df-exp 14109 df-hash 14376 df-word 14559 df-lsw 14607 df-concat 14615 df-s1 14640 df-substr 14685 df-pfx 14715 df-splice 14794 df-reverse 14803 df-s2 14893 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-starv 17322 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-unif 17330 df-hom 17331 df-cco 17332 df-0g 17497 df-gsum 17498 df-prds 17503 df-pws 17505 df-mre 17640 df-mrc 17641 df-acs 17643 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-mhm 18818 df-submnd 18819 df-efmnd 18904 df-grp 18976 df-minusg 18977 df-mulg 19108 df-subg 19163 df-ghm 19253 df-gim 19299 df-cntz 19357 df-oppg 19386 df-symg 19411 df-pmtr 19484 df-psgn 19533 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-rhm 20498 df-subrng 20572 df-subrg 20596 df-drng 20757 df-sra 21199 df-rgmod 21200 df-cnfld 21392 df-zring 21485 df-zrh 21541 df-dsmm 21779 df-frlm 21794 df-mat 22437 |
This theorem is referenced by: mdetdiag 22630 |
Copyright terms: Public domain | W3C validator |