![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > madetsumid | Structured version Visualization version GIF version |
Description: The identity summand in the Leibniz' formula of a determinant for a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) |
Ref | Expression |
---|---|
madetsumid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
madetsumid.b | ⊢ 𝐵 = (Base‘𝐴) |
madetsumid.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
madetsumid.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
madetsumid.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
madetsumid.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
madetsumid | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6493 | . . . 4 ⊢ (𝑃 = ( I ↾ 𝑁) → ((𝑌 ∘ 𝑆)‘𝑃) = ((𝑌 ∘ 𝑆)‘( I ↾ 𝑁))) | |
2 | fveq1 6492 | . . . . . . 7 ⊢ (𝑃 = ( I ↾ 𝑁) → (𝑃‘𝑟) = (( I ↾ 𝑁)‘𝑟)) | |
3 | 2 | oveq1d 6985 | . . . . . 6 ⊢ (𝑃 = ( I ↾ 𝑁) → ((𝑃‘𝑟)𝑀𝑟) = ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)) |
4 | 3 | mpteq2dv 5017 | . . . . 5 ⊢ (𝑃 = ( I ↾ 𝑁) → (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)) = (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟))) |
5 | 4 | oveq2d 6986 | . . . 4 ⊢ (𝑃 = ( I ↾ 𝑁) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) |
6 | 1, 5 | oveq12d 6988 | . . 3 ⊢ (𝑃 = ( I ↾ 𝑁) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟))))) |
7 | 6 | 3ad2ant3 1115 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟))))) |
8 | madetsumid.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | madetsumid.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
10 | 8, 9 | matrcl 20715 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
11 | 10 | simpld 487 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
12 | madetsumid.y | . . . . . . . . . 10 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
13 | madetsumid.s | . . . . . . . . . 10 ⊢ 𝑆 = (pmSgn‘𝑁) | |
14 | 12, 13 | coeq12i 5577 | . . . . . . . . 9 ⊢ (𝑌 ∘ 𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑌 ∘ 𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))) |
16 | eqid 2772 | . . . . . . . . . 10 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
17 | 16 | symgid 18280 | . . . . . . . . 9 ⊢ (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁))) |
18 | 17 | adantl 474 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁))) |
19 | 15, 18 | fveq12d 6500 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁)))) |
20 | crngring 19021 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
21 | zrhpsgnmhm 20420 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅))) | |
22 | madetsumid.u | . . . . . . . . . . 11 ⊢ 𝑈 = (mulGrp‘𝑅) | |
23 | 22 | oveq2i 6981 | . . . . . . . . . 10 ⊢ ((SymGrp‘𝑁) MndHom 𝑈) = ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) |
24 | 21, 23 | syl6eleqr 2871 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom 𝑈)) |
25 | 20, 24 | sylan 572 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom 𝑈)) |
26 | eqid 2772 | . . . . . . . . 9 ⊢ (0g‘(SymGrp‘𝑁)) = (0g‘(SymGrp‘𝑁)) | |
27 | eqid 2772 | . . . . . . . . . 10 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
28 | 22, 27 | ringidval 18966 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (0g‘𝑈) |
29 | 26, 28 | mhm0 17801 | . . . . . . . 8 ⊢ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom 𝑈) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = (1r‘𝑅)) |
30 | 25, 29 | syl 17 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = (1r‘𝑅)) |
31 | 19, 30 | eqtrd 2808 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) = (1r‘𝑅)) |
32 | fvresi 6752 | . . . . . . . . . 10 ⊢ (𝑟 ∈ 𝑁 → (( I ↾ 𝑁)‘𝑟) = 𝑟) | |
33 | 32 | adantl 474 | . . . . . . . . 9 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑟 ∈ 𝑁) → (( I ↾ 𝑁)‘𝑟) = 𝑟) |
34 | 33 | oveq1d 6985 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑟 ∈ 𝑁) → ((( I ↾ 𝑁)‘𝑟)𝑀𝑟) = (𝑟𝑀𝑟)) |
35 | 34 | mpteq2dva 5016 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)) = (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) |
36 | 35 | oveq2d 6986 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
37 | 31, 36 | oveq12d 6988 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) = ((1r‘𝑅) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))))) |
38 | 11, 37 | sylan2 583 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) = ((1r‘𝑅) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))))) |
39 | 8, 9, 22 | matgsumcl 20763 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) |
40 | eqid 2772 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
41 | madetsumid.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
42 | 40, 41, 27 | ringlidm 19034 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) → ((1r‘𝑅) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
43 | 20, 39, 42 | syl2an2r 672 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((1r‘𝑅) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
44 | 38, 43 | eqtrd 2808 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
45 | 44 | 3adant3 1112 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
46 | 7, 45 | eqtrd 2808 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 Vcvv 3409 ↦ cmpt 5002 I cid 5304 ↾ cres 5402 ∘ ccom 5404 ‘cfv 6182 (class class class)co 6970 Fincfn 8298 Basecbs 16329 .rcmulr 16412 0gc0g 16559 Σg cgsu 16560 MndHom cmhm 17791 SymGrpcsymg 18256 pmSgncpsgn 18368 mulGrpcmgp 18952 1rcur 18964 Ringcrg 19010 CRingccrg 19011 ℤRHomczrh 20339 Mat cmat 20710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-addf 10406 ax-mulf 10407 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-xor 1489 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-ot 4444 df-uni 4707 df-int 4744 df-iun 4788 df-iin 4789 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-se 5360 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-supp 7627 df-tpos 7688 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-2o 7898 df-oadd 7901 df-er 8081 df-map 8200 df-ixp 8252 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-fsupp 8621 df-sup 8693 df-oi 8761 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-5 11499 df-6 11500 df-7 11501 df-8 11502 df-9 11503 df-n0 11701 df-xnn0 11773 df-z 11787 df-dec 11905 df-uz 12052 df-rp 12198 df-fz 12702 df-fzo 12843 df-seq 13178 df-exp 13238 df-hash 13499 df-word 13663 df-lsw 13716 df-concat 13724 df-s1 13749 df-substr 13794 df-pfx 13843 df-splice 13950 df-reverse 13968 df-s2 14062 df-struct 16331 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-mulr 16425 df-starv 16426 df-sca 16427 df-vsca 16428 df-ip 16429 df-tset 16430 df-ple 16431 df-ds 16433 df-unif 16434 df-hom 16435 df-cco 16436 df-0g 16561 df-gsum 16562 df-prds 16567 df-pws 16569 df-mre 16705 df-mrc 16706 df-acs 16708 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-mhm 17793 df-submnd 17794 df-grp 17884 df-minusg 17885 df-mulg 18002 df-subg 18050 df-ghm 18117 df-gim 18160 df-cntz 18208 df-oppg 18235 df-symg 18257 df-pmtr 18321 df-psgn 18370 df-cmn 18658 df-abl 18659 df-mgp 18953 df-ur 18965 df-ring 19012 df-cring 19013 df-oppr 19086 df-dvdsr 19104 df-unit 19105 df-invr 19135 df-dvr 19146 df-rnghom 19180 df-drng 19217 df-subrg 19246 df-sra 19656 df-rgmod 19657 df-cnfld 20238 df-zring 20310 df-zrh 20343 df-dsmm 20568 df-frlm 20583 df-mat 20711 |
This theorem is referenced by: mdetdiag 20902 |
Copyright terms: Public domain | W3C validator |