| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > madetsumid | Structured version Visualization version GIF version | ||
| Description: The identity summand in the Leibniz' formula of a determinant for a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| madetsumid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| madetsumid.b | ⊢ 𝐵 = (Base‘𝐴) |
| madetsumid.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
| madetsumid.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| madetsumid.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| madetsumid.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| madetsumid | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6865 | . . . 4 ⊢ (𝑃 = ( I ↾ 𝑁) → ((𝑌 ∘ 𝑆)‘𝑃) = ((𝑌 ∘ 𝑆)‘( I ↾ 𝑁))) | |
| 2 | fveq1 6864 | . . . . . . 7 ⊢ (𝑃 = ( I ↾ 𝑁) → (𝑃‘𝑟) = (( I ↾ 𝑁)‘𝑟)) | |
| 3 | 2 | oveq1d 7409 | . . . . . 6 ⊢ (𝑃 = ( I ↾ 𝑁) → ((𝑃‘𝑟)𝑀𝑟) = ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)) |
| 4 | 3 | mpteq2dv 5209 | . . . . 5 ⊢ (𝑃 = ( I ↾ 𝑁) → (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)) = (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟))) |
| 5 | 4 | oveq2d 7410 | . . . 4 ⊢ (𝑃 = ( I ↾ 𝑁) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) |
| 6 | 1, 5 | oveq12d 7412 | . . 3 ⊢ (𝑃 = ( I ↾ 𝑁) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟))))) |
| 7 | 6 | 3ad2ant3 1135 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟))))) |
| 8 | madetsumid.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 9 | madetsumid.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
| 10 | 8, 9 | matrcl 22305 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 11 | 10 | simpld 494 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 12 | madetsumid.y | . . . . . . . . . 10 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 13 | madetsumid.s | . . . . . . . . . 10 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 14 | 12, 13 | coeq12i 5835 | . . . . . . . . 9 ⊢ (𝑌 ∘ 𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑌 ∘ 𝑆) = ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))) |
| 16 | eqid 2730 | . . . . . . . . . 10 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
| 17 | 16 | symgid 19337 | . . . . . . . . 9 ⊢ (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁))) |
| 18 | 17 | adantl 481 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁))) |
| 19 | 15, 18 | fveq12d 6872 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) = (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁)))) |
| 20 | crngring 20160 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 21 | zrhpsgnmhm 21499 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅))) | |
| 22 | madetsumid.u | . . . . . . . . . . 11 ⊢ 𝑈 = (mulGrp‘𝑅) | |
| 23 | 22 | oveq2i 7405 | . . . . . . . . . 10 ⊢ ((SymGrp‘𝑁) MndHom 𝑈) = ((SymGrp‘𝑁) MndHom (mulGrp‘𝑅)) |
| 24 | 21, 23 | eleqtrrdi 2840 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom 𝑈)) |
| 25 | 20, 24 | sylan 580 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom 𝑈)) |
| 26 | eqid 2730 | . . . . . . . . 9 ⊢ (0g‘(SymGrp‘𝑁)) = (0g‘(SymGrp‘𝑁)) | |
| 27 | eqid 2730 | . . . . . . . . . 10 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 28 | 22, 27 | ringidval 20098 | . . . . . . . . 9 ⊢ (1r‘𝑅) = (0g‘𝑈) |
| 29 | 26, 28 | mhm0 18727 | . . . . . . . 8 ⊢ (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁)) ∈ ((SymGrp‘𝑁) MndHom 𝑈) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = (1r‘𝑅)) |
| 30 | 25, 29 | syl 17 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘(0g‘(SymGrp‘𝑁))) = (1r‘𝑅)) |
| 31 | 19, 30 | eqtrd 2765 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) = (1r‘𝑅)) |
| 32 | fvresi 7154 | . . . . . . . . . 10 ⊢ (𝑟 ∈ 𝑁 → (( I ↾ 𝑁)‘𝑟) = 𝑟) | |
| 33 | 32 | adantl 481 | . . . . . . . . 9 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑟 ∈ 𝑁) → (( I ↾ 𝑁)‘𝑟) = 𝑟) |
| 34 | 33 | oveq1d 7409 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑟 ∈ 𝑁) → ((( I ↾ 𝑁)‘𝑟)𝑀𝑟) = (𝑟𝑀𝑟)) |
| 35 | 34 | mpteq2dva 5208 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)) = (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) |
| 36 | 35 | oveq2d 7410 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
| 37 | 31, 36 | oveq12d 7412 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) = ((1r‘𝑅) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))))) |
| 38 | 11, 37 | sylan2 593 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) = ((1r‘𝑅) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))))) |
| 39 | 8, 9, 22 | matgsumcl 22353 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) |
| 40 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 41 | madetsumid.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 42 | 40, 41, 27 | ringlidm 20184 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) → ((1r‘𝑅) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
| 43 | 20, 39, 42 | syl2an2r 685 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((1r‘𝑅) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
| 44 | 38, 43 | eqtrd 2765 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
| 45 | 44 | 3adant3 1132 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘( I ↾ 𝑁)) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((( I ↾ 𝑁)‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
| 46 | 7, 45 | eqtrd 2765 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑃 = ( I ↾ 𝑁)) → (((𝑌 ∘ 𝑆)‘𝑃) · (𝑈 Σg (𝑟 ∈ 𝑁 ↦ ((𝑃‘𝑟)𝑀𝑟)))) = (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ↦ cmpt 5196 I cid 5540 ↾ cres 5648 ∘ ccom 5650 ‘cfv 6519 (class class class)co 7394 Fincfn 8922 Basecbs 17185 .rcmulr 17227 0gc0g 17408 Σg cgsu 17409 MndHom cmhm 18714 SymGrpcsymg 19305 pmSgncpsgn 19425 mulGrpcmgp 20055 1rcur 20096 Ringcrg 20148 CRingccrg 20149 ℤRHomczrh 21415 Mat cmat 22300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-addf 11165 ax-mulf 11166 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-ot 4606 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-sup 9411 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-xnn0 12532 df-z 12546 df-dec 12666 df-uz 12810 df-rp 12966 df-fz 13482 df-fzo 13629 df-seq 13977 df-exp 14037 df-hash 14306 df-word 14489 df-lsw 14538 df-concat 14546 df-s1 14571 df-substr 14616 df-pfx 14646 df-splice 14725 df-reverse 14734 df-s2 14824 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-0g 17410 df-gsum 17411 df-prds 17416 df-pws 17418 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-efmnd 18802 df-grp 18874 df-minusg 18875 df-mulg 19006 df-subg 19061 df-ghm 19151 df-gim 19197 df-cntz 19255 df-oppg 19284 df-symg 19306 df-pmtr 19378 df-psgn 19427 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-rhm 20387 df-subrng 20461 df-subrg 20485 df-drng 20646 df-sra 21086 df-rgmod 21087 df-cnfld 21271 df-zring 21363 df-zrh 21419 df-dsmm 21647 df-frlm 21662 df-mat 22301 |
| This theorem is referenced by: mdetdiag 22492 |
| Copyright terms: Public domain | W3C validator |